Mathematical Symbols

List of all mathematical symbols and signs - meaning and examples.

Basic math symbols

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Symbol Name</th>
<th>Meaning / definition</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>=</td>
<td>equals sign</td>
<td>equality</td>
<td>5 = 2+3</td>
</tr>
<tr>
<td>≠</td>
<td>not equal sign</td>
<td>inequality</td>
<td>5 ≠ 4</td>
</tr>
<tr>
<td>></td>
<td>strict inequality</td>
<td>greater than</td>
<td>5 > 4</td>
</tr>
<tr>
<td><</td>
<td>strict inequality</td>
<td>less than</td>
<td>4 < 5</td>
</tr>
<tr>
<td>≥</td>
<td>inequality</td>
<td>greater than or equal to</td>
<td>5 ≥ 4</td>
</tr>
<tr>
<td>≤</td>
<td>inequality</td>
<td>less than or equal to</td>
<td>4 ≤ 5</td>
</tr>
<tr>
<td>()</td>
<td>parentheses</td>
<td>calculate expression inside first</td>
<td>2 × (3+5) = 16</td>
</tr>
<tr>
<td>[]</td>
<td>brackets</td>
<td>calculate expression inside first</td>
<td>[(1+2)*(1+5)] = 18</td>
</tr>
<tr>
<td>+</td>
<td>plus sign</td>
<td>addition</td>
<td>1 + 1 = 2</td>
</tr>
<tr>
<td>−</td>
<td>minus sign</td>
<td>subtraction</td>
<td>2 − 1 = 1</td>
</tr>
<tr>
<td>±</td>
<td>plus - minus</td>
<td>both plus and minus operations</td>
<td>3 ± 5 = 8 and -2</td>
</tr>
<tr>
<td>±±</td>
<td>minus - plus</td>
<td>both minus and plus operations</td>
<td>3 ± 5 = -2 and 8</td>
</tr>
<tr>
<td>∗</td>
<td>asterisk</td>
<td>multiplication</td>
<td>2 ∗ 3 = 6</td>
</tr>
<tr>
<td>×</td>
<td>times sign</td>
<td>multiplication</td>
<td>2 × 3 = 6</td>
</tr>
<tr>
<td>⋅</td>
<td>multiplication dot</td>
<td>multiplication</td>
<td>2 · 3 = 6</td>
</tr>
<tr>
<td>÷</td>
<td>division sign / obelus</td>
<td>division</td>
<td>6 ÷ 2 = 3</td>
</tr>
<tr>
<td>/</td>
<td>division slash</td>
<td>division / fraction</td>
<td>6 / 2 = 3</td>
</tr>
<tr>
<td>−</td>
<td>horizontal line</td>
<td>division / fraction</td>
<td>(\frac{6}{2} = 3)</td>
</tr>
<tr>
<td>mod</td>
<td>modulo</td>
<td>remainder calculation</td>
<td>7 mod 2 = 1</td>
</tr>
<tr>
<td>.</td>
<td>period</td>
<td>decimal point, decimal separator</td>
<td>2.56 = 2+56/100</td>
</tr>
<tr>
<td>(a^b)</td>
<td>power</td>
<td>exponent</td>
<td>(2^3 = 8)</td>
</tr>
<tr>
<td>(a^{^b})</td>
<td>caret</td>
<td>exponent</td>
<td>(2^{^3} = 8)</td>
</tr>
<tr>
<td>(\sqrt{a})</td>
<td>square root</td>
<td>(\sqrt{a} \cdot \sqrt{a} = a)</td>
<td>(\sqrt{9} = ±3)</td>
</tr>
<tr>
<td>(3\sqrt{a})</td>
<td>cube root</td>
<td>(3\sqrt{a} = 2)</td>
<td></td>
</tr>
<tr>
<td>(4\sqrt{a})</td>
<td>forth root</td>
<td>(4\sqrt{16} = ±2)</td>
<td></td>
</tr>
<tr>
<td>(n\sqrt{a})</td>
<td>n-th root (radical)</td>
<td>(\text{for } n=3, n\sqrt[3]{8} = 2)</td>
<td></td>
</tr>
<tr>
<td>%</td>
<td>percent</td>
<td>1% = 1/100</td>
<td>10% × 30 = 3</td>
</tr>
</tbody>
</table>
Geometry symbols

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Symbol Name</th>
<th>Meaning / definition</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>∠</td>
<td>angle</td>
<td>formed by two rays</td>
<td>∠ABC = 30º</td>
</tr>
<tr>
<td>∠</td>
<td>measured angle</td>
<td></td>
<td>∠ABC = 30º</td>
</tr>
<tr>
<td>∡</td>
<td>spherical angle</td>
<td></td>
<td>∡AOB = 30º</td>
</tr>
<tr>
<td>⊥</td>
<td>right angle</td>
<td>= 90º</td>
<td>α = 90º</td>
</tr>
<tr>
<td>°</td>
<td>degree</td>
<td>1 turn = 360º</td>
<td>α = 60º</td>
</tr>
<tr>
<td>′</td>
<td>arcminute</td>
<td>1º = 60′</td>
<td>α = 60°59′</td>
</tr>
<tr>
<td>″</td>
<td>arcsecond</td>
<td>1′ = 60″</td>
<td>α = 60°59′59″</td>
</tr>
<tr>
<td>AB</td>
<td>line</td>
<td>line from point A to point B</td>
<td></td>
</tr>
<tr>
<td>→ AB</td>
<td>ray</td>
<td>line that start from point A</td>
<td></td>
</tr>
<tr>
<td>┴</td>
<td>perpendicular</td>
<td>perpendicular lines (90º angle)</td>
<td>AC ┴ BC</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>parallel</td>
</tr>
<tr>
<td>≅</td>
<td>congruent to</td>
<td>equivalence of geometric shapes and size</td>
<td>ΔABC ≅ ΔXYZ</td>
</tr>
<tr>
<td>~</td>
<td>similarity</td>
<td>same shapes, not same size</td>
<td>ΔABC ~ ΔXYZ</td>
</tr>
<tr>
<td>Δ</td>
<td>triangle</td>
<td>triangle shape</td>
<td>ΔABC ≅ ΔBCD</td>
</tr>
<tr>
<td></td>
<td>x−y</td>
<td></td>
<td>distance</td>
</tr>
<tr>
<td>π</td>
<td>pi constant</td>
<td>π = 3.141592654...</td>
<td>c = πd = 2πr</td>
</tr>
<tr>
<td>rad</td>
<td>radians</td>
<td>radians angle unit</td>
<td>360º = 2π rad</td>
</tr>
<tr>
<td>grad</td>
<td>grads</td>
<td>grads angle unit</td>
<td>360º = 400 grad</td>
</tr>
</tbody>
</table>

Algebra symbols

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Symbol Name</th>
<th>Meaning / definition</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>x variable</td>
<td>unknown value to find</td>
<td>when 2x = 4, then x = 2</td>
</tr>
<tr>
<td>≡</td>
<td>equivalence</td>
<td>identical to</td>
<td></td>
</tr>
<tr>
<td>Δ</td>
<td>equal by definition</td>
<td>equal by definition</td>
<td></td>
</tr>
<tr>
<td>¨</td>
<td>equal by definition</td>
<td>equal by definition</td>
<td></td>
</tr>
<tr>
<td>~</td>
<td>approximately equal</td>
<td>weak approximation</td>
<td>11 ~ 10</td>
</tr>
<tr>
<td>≈</td>
<td>approximately equal</td>
<td>approximation</td>
<td>sin(0.01) ≈ 0.01</td>
</tr>
<tr>
<td>∞</td>
<td>proportional to</td>
<td>proportional to</td>
<td>f(x) ∝ g(x)</td>
</tr>
<tr>
<td>∞</td>
<td>infinity symbol</td>
<td></td>
<td></td>
</tr>
<tr>
<td>≪</td>
<td>much less than</td>
<td>much less than</td>
<td>1 ≪ 1000000</td>
</tr>
<tr>
<td>≫</td>
<td>much greater than</td>
<td>much greater than</td>
<td>1000000 ≫ 1</td>
</tr>
<tr>
<td>()</td>
<td>parentheses</td>
<td>calculate expression inside first</td>
<td>2 * (3+5) = 16</td>
</tr>
<tr>
<td>[]</td>
<td>brackets</td>
<td>calculate expression inside first</td>
<td>[(1+2)*(1+5)] = 18</td>
</tr>
<tr>
<td>{ }</td>
<td>braces</td>
<td>set</td>
<td></td>
</tr>
<tr>
<td>⌊x⌋</td>
<td>floor brackets</td>
<td>rounds number to lower integer</td>
<td>⌊4.3⌋ = 4</td>
</tr>
</tbody>
</table>
Mathematical Symbols

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Meaning / definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>[]</td>
<td>ceiling brackets</td>
</tr>
<tr>
<td>(x!)</td>
<td>factorial</td>
</tr>
<tr>
<td>(\mid x \mid)</td>
<td>absolute value</td>
</tr>
<tr>
<td>(f(x))</td>
<td>function of x</td>
</tr>
<tr>
<td>((f \circ g))</td>
<td>function composition</td>
</tr>
<tr>
<td>((a,b))</td>
<td>open interval</td>
</tr>
<tr>
<td>([a,b])</td>
<td>closed interval</td>
</tr>
<tr>
<td>(\Delta)</td>
<td>delta</td>
</tr>
<tr>
<td>(\sum)</td>
<td>summation</td>
</tr>
<tr>
<td>(\prod)</td>
<td>product</td>
</tr>
<tr>
<td>(e)</td>
<td>e constant / Euler's number</td>
</tr>
<tr>
<td>(\gamma)</td>
<td>Euler-Mascheroni constant</td>
</tr>
<tr>
<td>(\phi)</td>
<td>golden ratio</td>
</tr>
</tbody>
</table>

Linear Algebra Symbols

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Meaning / definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\cdot)</td>
<td>dot</td>
</tr>
<tr>
<td>(\times)</td>
<td>cross</td>
</tr>
<tr>
<td>(A \otimes B)</td>
<td>tensor product</td>
</tr>
<tr>
<td>(\langle x, y \rangle)</td>
<td>inner product</td>
</tr>
<tr>
<td>([])</td>
<td>brackets</td>
</tr>
<tr>
<td>(())</td>
<td>parentheses</td>
</tr>
<tr>
<td>(\mid A \mid)</td>
<td>determinant</td>
</tr>
<tr>
<td>(\det(A))</td>
<td>determinant of matrix A</td>
</tr>
<tr>
<td>(| x |)</td>
<td>double vertical bars</td>
</tr>
<tr>
<td>(A^T)</td>
<td>transpose</td>
</tr>
<tr>
<td>(A^\dagger)</td>
<td>Hermitian matrix</td>
</tr>
<tr>
<td>(A^*)</td>
<td>Hermitian matrix</td>
</tr>
<tr>
<td>(A^{-1})</td>
<td>inverse matrix</td>
</tr>
<tr>
<td>rank(A)</td>
<td>matrix rank</td>
</tr>
<tr>
<td>dim(U)</td>
<td>dimension</td>
</tr>
</tbody>
</table>

Probability and statistics symbols

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Meaning / definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>(P(A))</td>
<td>probability function</td>
</tr>
<tr>
<td>(P(A \cap B))</td>
<td>probability of events intersection</td>
</tr>
<tr>
<td>(P(A \cup B))</td>
<td>probability of events union</td>
</tr>
<tr>
<td>(P(A \mid B))</td>
<td>conditional probability function</td>
</tr>
</tbody>
</table>

Example

- \(\lceil 4.3 \rceil = 5 \)
- \(4! = 1 \times 2 \times 3 \times 4 = 24 \)
- \(| -5 | = 5 \)
- \((f \circ g)(x) = f(g(x)) \)
- \((a,b) \triangleq \{ x \mid a < x < b \} \)
- \([a,b] \triangleq \{ x \mid a \leq x \leq b \} \)
- \(\Delta t = t_1 - t_0 \)
- \(\Delta \triangleq b^2 - 4ac \)
- \(\sum_{i=1}^{8} x_{i,j} = \sum_{i=1}^{8} x_{i,1} + \sum_{i=1}^{8} x_{i,2} \)
- \(e = \lim_{x \to \infty} (1 + \frac{1}{x})^x = 2.718281828... \)
- \(\gamma = 0.527721566... \)
- \(\phi = 0.618033988... \)
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>$f(x)$</td>
<td>probability density function (pdf)</td>
<td>$P(a \leq x \leq b) = \int f(x) , dx$</td>
</tr>
<tr>
<td>$F(x)$</td>
<td>cumulative distribution function (cdf)</td>
<td>$F(x) = P(X \leq x)$</td>
</tr>
<tr>
<td>μ</td>
<td>population mean</td>
<td>mean of population values</td>
</tr>
<tr>
<td>$E(X)$</td>
<td>expectation value</td>
<td>expected value of random variable X</td>
</tr>
<tr>
<td>$E(X</td>
<td>Y)$</td>
<td>conditional expectation</td>
</tr>
<tr>
<td>$\text{var}(X)$</td>
<td>variance</td>
<td>variance of random variable X</td>
</tr>
<tr>
<td>σ^2</td>
<td>variance</td>
<td>variance of population values</td>
</tr>
<tr>
<td>$\text{std}(X)$</td>
<td>standard deviation</td>
<td>standard deviation of random variable X</td>
</tr>
<tr>
<td>σ_X</td>
<td>standard deviation</td>
<td>standard deviation value of random variable X</td>
</tr>
<tr>
<td>\hat{x}</td>
<td>median</td>
<td>middle value of random variable x</td>
</tr>
<tr>
<td>$\text{cov}(X, Y)$</td>
<td>covariance</td>
<td>covariance of random variables X and Y</td>
</tr>
<tr>
<td>$\text{corr}(X, Y)$</td>
<td>correlation</td>
<td>correlation of random variables X and Y</td>
</tr>
<tr>
<td>$\rho_{X,Y}$</td>
<td>correlation</td>
<td>correlation of random variables X and Y</td>
</tr>
<tr>
<td>\sum</td>
<td>summation</td>
<td>summation - sum of all values in range of series</td>
</tr>
<tr>
<td>$\Sigma\Sigma$</td>
<td>double summation</td>
<td>double summation</td>
</tr>
<tr>
<td>M_0</td>
<td>mode</td>
<td>value that occurs most frequently in population</td>
</tr>
<tr>
<td>MR</td>
<td>mid-range</td>
<td>$(x_{\text{max}} + x_{\text{min}})/2$</td>
</tr>
<tr>
<td>Md</td>
<td>sample median</td>
<td>half the population is below this value</td>
</tr>
<tr>
<td>Q_1</td>
<td>lower / first quartile</td>
<td>25% of population are below this value</td>
</tr>
<tr>
<td>Q_2</td>
<td>median / second quartile</td>
<td>50% of population are below this value = median of samples</td>
</tr>
<tr>
<td>Q_3</td>
<td>upper / third quartile</td>
<td>75% of population are below this value</td>
</tr>
<tr>
<td>\bar{x}</td>
<td>sample mean</td>
<td>average / arithmetic mean</td>
</tr>
<tr>
<td>s^2</td>
<td>sample variance</td>
<td>population samples variance estimator</td>
</tr>
<tr>
<td>s</td>
<td>sample standard deviation</td>
<td>population samples standard deviation estimator</td>
</tr>
<tr>
<td>z_x</td>
<td>standard score</td>
<td>$z_x = (x - \bar{x}) / s_x$</td>
</tr>
<tr>
<td>$X \sim$</td>
<td>distribution of X</td>
<td>distribution of random variable X</td>
</tr>
<tr>
<td>$N(\mu, \sigma^2)$</td>
<td>normal distribution</td>
<td>gaussian distribution</td>
</tr>
<tr>
<td>$U(a,b)$</td>
<td>uniform distribution</td>
<td>equal probability in range a,b</td>
</tr>
<tr>
<td>$\text{exp}(\lambda)$</td>
<td>exponential distribution</td>
<td>$f(x) = \lambda e^{-\lambda x}, x \geq 0$</td>
</tr>
<tr>
<td>$\text{gamma}(c, \lambda)$</td>
<td>gamma distribution</td>
<td>$f(x) = \lambda e^{x-1} e^{-\lambda x} / \Gamma(c), x \geq 0$</td>
</tr>
<tr>
<td>$\chi^2(k)$</td>
<td>chi-square distribution</td>
<td>$f(x) = x^{k/2-1} e^{-x/2} / (2^{k/2} \Gamma(k/2))$</td>
</tr>
<tr>
<td>$F(k_1, k_2)$</td>
<td>F distribution</td>
<td></td>
</tr>
<tr>
<td>$\text{Bin}(n,p)$</td>
<td>binomial distribution</td>
<td>$f(k) = \binom{n}{k} p^k (1-p)^{n-k}$</td>
</tr>
<tr>
<td>$\text{Poisson}(\lambda)$</td>
<td>Poisson distribution</td>
<td>$f(k) = \lambda^k e^{-\lambda} / k!$</td>
</tr>
<tr>
<td>$\text{Geom}(p)$</td>
<td>geometric distribution</td>
<td>$f(k) = \lambda^k e^{-\lambda} / k!$</td>
</tr>
<tr>
<td>$\text{HG}(N,K,n)$</td>
<td>hyper-geometric distribution</td>
<td></td>
</tr>
<tr>
<td>$\text{Bern}(p)$</td>
<td>Bernoulli distribution</td>
<td></td>
</tr>
</tbody>
</table>
Combinatorics Symbols

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Symbol Name</th>
<th>Meaning / definition</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>$n!$</td>
<td>factorial</td>
<td>$n! = 1 \cdot 2 \cdot 3 \cdot \ldots \cdot n$</td>
<td>$5! = 1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 = 120$</td>
</tr>
<tr>
<td>nP_k</td>
<td>permutation</td>
<td>$nP_k = \frac{n!}{(n-k)!}$</td>
<td>$sP_3 = 5! / (5-3)! = 60$</td>
</tr>
<tr>
<td>nC_k</td>
<td>combination</td>
<td>$nC_k = \binom{n}{k} = \frac{n!}{k!(n-k)!}$</td>
<td>$5C_3 = 5!/3!(5-3)! = 10$</td>
</tr>
</tbody>
</table>

Set theory symbols

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Symbol Name</th>
<th>Meaning / definition</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>{}</td>
<td>set</td>
<td>a collection of elements</td>
<td>$A={3,7,9,14}, B={9,14,28}$</td>
</tr>
<tr>
<td>$A \cap B$</td>
<td>intersection</td>
<td>objects that belong to set A and set B</td>
<td>$A \cap B = {9,14}$</td>
</tr>
<tr>
<td>$A \cup B$</td>
<td>union</td>
<td>objects that belong to set A or set B</td>
<td>$A \cup B = {3,7,9,14,28}$</td>
</tr>
<tr>
<td>$A \subseteq B$</td>
<td>subset</td>
<td>subset has less elements or equal to the set</td>
<td>${9,14,28} \subseteq {9,14,28}$</td>
</tr>
<tr>
<td>$A \subset B$</td>
<td>proper subset / strict subset</td>
<td>subset has less elements than the set</td>
<td>${9,14} \subset {9,14,28}$</td>
</tr>
<tr>
<td>$A \nsubseteq B$</td>
<td>not subset</td>
<td>left set not a subset of right set</td>
<td>${9,66} \nsubseteq {9,14,28}$</td>
</tr>
<tr>
<td>$A \supseteq B$</td>
<td>superset</td>
<td>set A has more elements or equal to the set</td>
<td>${9,14,28} \supseteq {9,14,28}$</td>
</tr>
<tr>
<td>$A \supset B$</td>
<td>proper superset / strict superset</td>
<td>set A has more elements than set B</td>
<td>${9,14,28} \supset {9,14}$</td>
</tr>
<tr>
<td>$A \nsubseteq B$</td>
<td>not superset</td>
<td>set A is not a superset of set B</td>
<td>${9,14,28} \nsubseteq {9,66}$</td>
</tr>
<tr>
<td>2^A</td>
<td>power set</td>
<td>all subsets of A</td>
<td></td>
</tr>
<tr>
<td>$\mathcal{P}(A)$</td>
<td>power set</td>
<td>all subsets of A</td>
<td></td>
</tr>
<tr>
<td>$A = B$</td>
<td>equality</td>
<td>both sets have the same members</td>
<td>$A={3,9,14}, B={3,9,14}, A=B$</td>
</tr>
<tr>
<td>A^c</td>
<td>complement</td>
<td>all the objects that do not belong to set A</td>
<td></td>
</tr>
<tr>
<td>$A \setminus B$</td>
<td>relative complement</td>
<td>objects that belong to A and not to B</td>
<td>$A={3,9,14}, B={1,2,3}, A-B={9,14}$</td>
</tr>
<tr>
<td>$A - B$</td>
<td>relative complement</td>
<td>objects that belong to A and not to B</td>
<td>$A={3,9,14}, B={1,2,3}, A-B={9,14}$</td>
</tr>
<tr>
<td>$A \Delta B$</td>
<td>symmetric difference</td>
<td>objects that belong to A or B but not to their intersection</td>
<td>$A={3,9,14}, B={1,2,3}, A \Delta B={1,2,9,14}$</td>
</tr>
<tr>
<td>$A \oplus B$</td>
<td>symmetric difference</td>
<td>objects that belong to A or B but not to their intersection</td>
<td>$A={3,9,14}, B={1,2,3}, A \oplus B={1,2,9,14}$</td>
</tr>
<tr>
<td>$a \in A$</td>
<td>element of</td>
<td>set membership</td>
<td>$A={3,9,14}, 3 \in A$</td>
</tr>
<tr>
<td>$x \notin A$</td>
<td>not element of</td>
<td>no set membership</td>
<td>$A={3,9,14}, 1 \notin A$</td>
</tr>
<tr>
<td>(a,b)</td>
<td>ordered pair</td>
<td>collection of 2 elements</td>
<td></td>
</tr>
<tr>
<td>$A \times B$</td>
<td>cartesian product</td>
<td>set of all ordered pairs from A and B</td>
<td></td>
</tr>
<tr>
<td>$</td>
<td>A</td>
<td>$</td>
<td>cardinality</td>
</tr>
<tr>
<td>$#A$</td>
<td>cardinality</td>
<td>the number of elements of set A</td>
<td>$A={3,9,14}, #A=3$</td>
</tr>
<tr>
<td>\aleph</td>
<td>aleph</td>
<td>infinite cardinality</td>
<td></td>
</tr>
<tr>
<td>\emptyset</td>
<td>empty set</td>
<td>$\emptyset = {}$</td>
<td>$C = {\emptyset}$</td>
</tr>
<tr>
<td>U</td>
<td>universal set</td>
<td>set of all possible values</td>
<td></td>
</tr>
<tr>
<td>\mathbb{N}_0</td>
<td>natural numbers set (with zero)</td>
<td>$\mathbb{N}_0 = {0,1,2,3,4,\ldots}$</td>
<td>$0 \in \mathbb{N}_0$</td>
</tr>
<tr>
<td>Natural numbers set (without zero) (\mathbb{N}_1)</td>
<td>(\mathbb{N}_1 = {1,2,3,4,5,...})</td>
<td>6 ∈ (\mathbb{N}_1)</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>Integer numbers set (\mathbb{Z})</td>
<td>(\mathbb{Z} = {-3,-2,-1,0,1,2,3,...})</td>
<td>-6 ∈ (\mathbb{Z})</td>
<td></td>
</tr>
<tr>
<td>Rational numbers set (\mathbb{Q})</td>
<td>(\mathbb{Q} = {x</td>
<td>x=a/b, a,b \in \mathbb{N}_1})</td>
<td>2/6 ∈ (\mathbb{Q})</td>
</tr>
<tr>
<td>Real numbers set (\mathbb{R})</td>
<td>(\mathbb{R} = {x</td>
<td>-\infty < x < \infty})</td>
<td>6.343434 ∈ (\mathbb{R})</td>
</tr>
<tr>
<td>Complex numbers set (\mathbb{C})</td>
<td>(\mathbb{C} = {z</td>
<td>z=a+bi, -\infty < a < \infty, -\infty < b < \infty})</td>
<td>6+2i ∈ (\mathbb{C})</td>
</tr>
</tbody>
</table>

Logic symbols

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Symbol Name</th>
<th>Meaning / definition</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>·</td>
<td>and</td>
<td>and</td>
<td>(x \cdot y)</td>
</tr>
<tr>
<td>^</td>
<td>caret / circumflex</td>
<td>and</td>
<td>(x^y)</td>
</tr>
<tr>
<td>&</td>
<td>ampersand</td>
<td>and</td>
<td>(x & y)</td>
</tr>
<tr>
<td>+</td>
<td>plus</td>
<td>or</td>
<td>(x + y)</td>
</tr>
<tr>
<td>∨</td>
<td>reversed caret</td>
<td>or</td>
<td>(x \lor y)</td>
</tr>
<tr>
<td></td>
<td>vertical line</td>
<td>or</td>
<td>(x \mid y)</td>
</tr>
<tr>
<td>'</td>
<td>single quote</td>
<td>not - negation</td>
<td>(x')</td>
</tr>
<tr>
<td>¯</td>
<td>bar</td>
<td>not - negation</td>
<td>(\bar{x})</td>
</tr>
<tr>
<td>¬</td>
<td>not</td>
<td>not - negation</td>
<td>(\neg x)</td>
</tr>
<tr>
<td>!</td>
<td>exclamation mark</td>
<td>not - negation</td>
<td>(!x)</td>
</tr>
<tr>
<td>⊕</td>
<td>circled plus / oplus</td>
<td>exclusive or - xor</td>
<td>(x \oplus y)</td>
</tr>
<tr>
<td>~</td>
<td>tilde</td>
<td>negation</td>
<td>(\sim x)</td>
</tr>
<tr>
<td>⇒</td>
<td>implies</td>
<td></td>
<td></td>
</tr>
<tr>
<td>⇔</td>
<td>equivalent</td>
<td>if and only if</td>
<td></td>
</tr>
<tr>
<td>∀</td>
<td>for all</td>
<td></td>
<td></td>
</tr>
<tr>
<td>∃</td>
<td>there exists</td>
<td></td>
<td></td>
</tr>
<tr>
<td>∄</td>
<td>there does not exist</td>
<td></td>
<td></td>
</tr>
<tr>
<td>∴</td>
<td>therefore</td>
<td></td>
<td></td>
</tr>
<tr>
<td>∵</td>
<td>because / since</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Calculus & analysis symbols

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Symbol Name</th>
<th>Meaning / definition</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\lim_{x \to a} f(x))</td>
<td>limit</td>
<td>limit value of a function</td>
<td></td>
</tr>
<tr>
<td>ε</td>
<td>epsilon</td>
<td>represents a very small number, near zero</td>
<td>(\varepsilon \to 0)</td>
</tr>
<tr>
<td>e</td>
<td>e constant / Euler's number</td>
<td>(e = 2.718281828...)</td>
<td>(e = \lim (1+1/x)^x, x \to \infty)</td>
</tr>
<tr>
<td>y'</td>
<td>derivative</td>
<td>derivative - Leibniz's notation</td>
<td>((3x^3)' = 9x^2)</td>
</tr>
<tr>
<td>y''</td>
<td>second derivative</td>
<td>derivative of derivative</td>
<td>((3x^3)^{''} = 18x)</td>
</tr>
<tr>
<td>(y^{(n)})</td>
<td>nth derivative</td>
<td>n times derivation</td>
<td>((3x^3)^{(3)} = 18)</td>
</tr>
<tr>
<td>(dy \over dx)</td>
<td>derivative</td>
<td>derivative - Lagrange's notation</td>
<td>(d(3x^3)/dx = 9x^2)</td>
</tr>
<tr>
<td>(d^2y \over dx^2)</td>
<td>second derivative</td>
<td>derivative of derivative</td>
<td>(d^2(3x^3)/dx^2 = 18x)</td>
</tr>
<tr>
<td>(d^n y \over dx^n)</td>
<td>nth derivative</td>
<td>n times derivation</td>
<td>(d^3y/dx^3 = 18)</td>
</tr>
<tr>
<td>(dy/\Delta x)</td>
<td>time derivative</td>
<td>derivative by time - Newton notation</td>
<td></td>
</tr>
<tr>
<td>(\dddot{y})</td>
<td>time second derivative</td>
<td>(\frac{\partial f(x, y)}{\partial x})</td>
<td>partial derivative</td>
</tr>
<tr>
<td>----------------</td>
<td>-----------------------</td>
<td>-------------------------</td>
<td>--------------------</td>
</tr>
<tr>
<td>(\int)</td>
<td>integral</td>
<td>opposite to derivation</td>
<td>(\int)</td>
</tr>
<tr>
<td>(\iint)</td>
<td>double integral</td>
<td>integration of function of 2 variables</td>
<td>(\iint)</td>
</tr>
<tr>
<td>(\iiint)</td>
<td>triple integral</td>
<td>integration of function of 3 variables</td>
<td>(\iiint)</td>
</tr>
<tr>
<td>(\oint)</td>
<td>closed contour / line integral</td>
<td>(\oint)</td>
<td>(\oint)</td>
</tr>
<tr>
<td>(\iint)</td>
<td>closed surface integral</td>
<td>(\iint)</td>
<td>(\iint)</td>
</tr>
<tr>
<td>(\iiint)</td>
<td>closed volume integral</td>
<td>(\iiint)</td>
<td>(\iiint)</td>
</tr>
<tr>
<td>([a, b])</td>
<td>closed interval</td>
<td>([a, b] = { x \mid a \leq x \leq b })</td>
<td>([a, b])</td>
</tr>
<tr>
<td>((a, b))</td>
<td>open interval</td>
<td>((a, b) = { x \mid a < x < b })</td>
<td>((a, b))</td>
</tr>
<tr>
<td>(i)</td>
<td>imaginary unit</td>
<td>(i = \sqrt{-1})</td>
<td>(i \equiv \sqrt{-1})</td>
</tr>
<tr>
<td>(z^*)</td>
<td>complex conjugate</td>
<td>(z = a+bi \rightarrow z^* = a-bi)</td>
<td>(z^* = 3 + 2i)</td>
</tr>
<tr>
<td>(z)</td>
<td>complex conjugate</td>
<td>(z = a+bi \rightarrow z = a-bi)</td>
<td>(z = 3 + 2i)</td>
</tr>
<tr>
<td>(\nabla)</td>
<td>nabla / (\Delta)</td>
<td>gradient / divergence operator</td>
<td>(\nabla f(x, y, z))</td>
</tr>
<tr>
<td>(\vec{x})</td>
<td>vector</td>
<td>(\vec{x})</td>
<td>(\vec{x})</td>
</tr>
<tr>
<td>(\hat{x})</td>
<td>unit vector</td>
<td>(\hat{x})</td>
<td>(\hat{x})</td>
</tr>
<tr>
<td>(x * y)</td>
<td>convolution</td>
<td>(y(t) = x(t) * h(t))</td>
<td>(\mathcal{L})</td>
</tr>
<tr>
<td>(\mathcal{L})</td>
<td>Laplace transform</td>
<td>(F(s) = \mathcal{L}{f(t)})</td>
<td>(\mathcal{F})</td>
</tr>
<tr>
<td>(\mathcal{F})</td>
<td>Fourier transform</td>
<td>(X(\omega) = \mathcal{F}{f(t)})</td>
<td>(\delta)</td>
</tr>
<tr>
<td>(\delta)</td>
<td>delta function</td>
<td>(\delta)</td>
<td>(\delta)</td>
</tr>
</tbody>
</table>

Numeral symbols

<table>
<thead>
<tr>
<th>Name</th>
<th>European</th>
<th>Roman</th>
<th>Hindu Arabic</th>
<th>Hebrew</th>
</tr>
</thead>
<tbody>
<tr>
<td>zero</td>
<td>0</td>
<td>٠</td>
<td>א</td>
<td>0</td>
</tr>
<tr>
<td>one</td>
<td>1</td>
<td>I</td>
<td>א</td>
<td>١</td>
</tr>
<tr>
<td>two</td>
<td>2</td>
<td>II</td>
<td>ב</td>
<td>٢</td>
</tr>
<tr>
<td>three</td>
<td>3</td>
<td>III</td>
<td>ג</td>
<td>٣</td>
</tr>
<tr>
<td>four</td>
<td>4</td>
<td>IV</td>
<td>ד</td>
<td>٤</td>
</tr>
<tr>
<td>five</td>
<td>5</td>
<td>V</td>
<td>ה</td>
<td>٥</td>
</tr>
<tr>
<td>six</td>
<td>6</td>
<td>VI</td>
<td>ו</td>
<td>٦</td>
</tr>
<tr>
<td>seven</td>
<td>7</td>
<td>VII</td>
<td>ז</td>
<td>٧</td>
</tr>
<tr>
<td>eight</td>
<td>8</td>
<td>VIII</td>
<td>ח</td>
<td>٨</td>
</tr>
<tr>
<td>nine</td>
<td>9</td>
<td>IX</td>
<td>ט</td>
<td>٩</td>
</tr>
<tr>
<td>ten</td>
<td>10</td>
<td>X</td>
<td>י</td>
<td>١٠</td>
</tr>
<tr>
<td>eleven</td>
<td>11</td>
<td>XI</td>
<td>יא</td>
<td>יא</td>
</tr>
<tr>
<td>twelve</td>
<td>12</td>
<td>XII</td>
<td>יב</td>
<td>יב</td>
</tr>
<tr>
<td>thirteen</td>
<td>13</td>
<td>XIII</td>
<td>יג</td>
<td>יג</td>
</tr>
<tr>
<td>fourteen</td>
<td>14</td>
<td>XIV</td>
<td>יד</td>
<td>יד</td>
</tr>
<tr>
<td>fifteen</td>
<td>15</td>
<td>XV</td>
<td>ט</td>
<td>ט</td>
</tr>
<tr>
<td>sixteen</td>
<td>16</td>
<td>XVI</td>
<td>טו</td>
<td>טו</td>
</tr>
<tr>
<td>seventeen</td>
<td>17</td>
<td>XVII</td>
<td>טו</td>
<td>טו</td>
</tr>
<tr>
<td>eighteen</td>
<td>18</td>
<td>XVIII</td>
<td>יז</td>
<td>יז</td>
</tr>
<tr>
<td>nineteen</td>
<td>19</td>
<td>XIX</td>
<td>יח</td>
<td>יח</td>
</tr>
<tr>
<td>twenty</td>
<td>20</td>
<td>XX</td>
<td>יכ</td>
<td>יכ</td>
</tr>
<tr>
<td>thirty</td>
<td>30</td>
<td>XXX</td>
<td>יד</td>
<td>יד</td>
</tr>
<tr>
<td>forty</td>
<td>40</td>
<td>XL</td>
<td>יז</td>
<td>יז</td>
</tr>
<tr>
<td>fifty</td>
<td>50</td>
<td>L</td>
<td>כ</td>
<td>כ</td>
</tr>
<tr>
<td>Number</td>
<td>Roman numeral</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>---------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>I</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>II</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>III</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>IV</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>VI</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>VII</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>VIII</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>IX</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Decimal</td>
<td>Roman</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>-------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>XI</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>XII</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>XIII</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>XIV</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>XV</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>XVI</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>XVII</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>XVIII</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>XIX</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>XX</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>XXX</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>XL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>L</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>LX</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>70</td>
<td>LXX</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>LXXX</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>90</td>
<td>XC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>200</td>
<td>CC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>300</td>
<td>CCC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>400</td>
<td>CD</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>500</td>
<td>D</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>600</td>
<td>DC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>700</td>
<td>DCC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>800</td>
<td>DCCC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>900</td>
<td>CM</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1000</td>
<td>M</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5000</td>
<td>V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10000</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50000</td>
<td>L</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100000</td>
<td>C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>500000</td>
<td>D</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1000000</td>
<td>M</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

See also
- Algebra symbols
- Geometry symbols
- Statistical symbols
- Logic symbols
- Set theory symbols
- Calculus & analysis symbols
- Number symbols
- Greek alphabet symbols
- Roman numerals
- Math calculators

Discover Your Potential
Dynamic Tutors, Amazing Results 200 point money-back guarantee

© 2006-2011 RapidTables.com

http://www.rapidtables.com/math/symbols/Basic_Math_Symbols.htm