Testing of Power Transformers

Routine tests, Type tests and Special tests
Testing of Power Transformers
Routine tests, Type tests and Special tests
Testing of
Power Transformers

Routine tests, Type tests and Special tests

under participation of

Åke Carlson
Jitka Fuhr
Gottfried Schemel
Franz Wegscheider

1st Edition
published by
PRO PRINT
for

ABB Business Area Power Transformers
Affolternstrasse 44, 8050 Zürich, SCHWEIZ
Telefon +41 1317 7126, e-Mail: info@abb.com, www.abb.com
Testing of Power Transformers

under participation of
Åke Carlson
Jitka Fuhr
Gottfried Schemel
Franz Wegscheider

1st Edition
published by Pro Print GmbH, Düsseldorf

ISBN 3-00-010400-3 – € 76.00

© ABB AG

All rights reserved.
Remember school days? Nothing caused more excitement than the teachers’ announcement of a test. Because a test confirms what you know, if you can apply in real life what you have learned in a classroom, under strict, rigorous and controlled conditions. It is a chance to demonstrate excellence.

Testing of power transformers seems like a similar experience; and therefore ABB undertook to write this book.

Transformer testing has developed considerably over the past years. It evolved from the simple go-no-go verdict into a sophisticated segment within transformer manufacturing. In this book we have laid down important aspects on transformer testing in order to enhance the understanding of the testing procedures and its outcome.

The book represents the collective wisdom of over 100 years of testing power transformers. It has been written for transformer designers, test field engineers, inspectors, consultants, academics and those involved in product quality.

ABB believes that the knowledge contained in this book will serve to ensure that you receive the best power transformer possible. The more knowledgeable you are, the better the decisions you will take.

Zürich, October 2003
Table of Contents

Preface
1 Introduction
1.1 Why transformer testing?
1.2 Types of tests
1.3 Test sequence
1.4 Remarks concerning this test book
2 Dielectric integrity and its verification
2.1 References / Standards
2.2 General
2.3 Voltage appearing during operation
2.4 Verifying transformer major insulation electrical strength
2.5 Test voltages
2.6 Test requirements
2.7 Examples for dielectric routine tests
A 2 Appendix
A 2.1 Examples
3 Measurement of winding resistance
3.1 References / Standards
3.2 Purpose of the test
3.3 General
3.4 Principle and methods for resistance measurement
3.5 Measurement procedure
3.6 Interpretation of the measured values
3.7 Examples
3.8 Uncertainty in resistance measurements
A 3 Appendix
A 3.1 General requirements on equipment
A 3.2 Value of the DC-current of measurement
A 3.3 Kelvin (Thomson) measuring circuit
A 3.4 Examples
4 Verification of voltage ratio and vector group or phase displacement
4.1 References / Standards
4.2 Purpose of measurement
4.3 General
4.4 Measuring the voltage ratio
4.5 Test circuit
4.6 Measuring procedure
4.7 Measuring uncertainty
A 4 Appendix
A 4.1 Determination and localization of errors
5 Measuring the short-circuit voltage impedance and the load loss
5.1 References / Standards
5.2 Purpose of the test
5.3 General
5.4 Measuring circuit
5.5 Measuring procedure
5.6 Evaluation of the measuring results
5.7 Measuring uncertainty
A 5 Appendix
A 5.1 Interdependence of relative short-circuit voltage (or short-circuit voltage) and winding temperature
A 5.2 Load loss separation when winding resistances are not known
A 5.3 Measuring equipment requirements
A 5.4 Instrument error correction
A 5.5 Instrument transformer error correction
A 5.6 Measuring the short-circuit voltage for starting transformers having an air gap
A 5.7 Connection for investigation tests
A 5.8 Examples
6 Measuring the no-load loss and no-load current
6.1 References / standards
6.2 Purpose of measurement
6.3 General
6.4 Measuring circuit
6.5 Measuring procedure
6.6 Evaluation of the measuring results
6.7 Measuring uncertainty

<table>
<thead>
<tr>
<th>Appendix</th>
<th>92</th>
</tr>
</thead>
<tbody>
<tr>
<td>A 6.1 Measuring equipment specification</td>
<td>92</td>
</tr>
<tr>
<td>A 6.2 Determination of the hysteresis and eddy current loss components</td>
<td>92</td>
</tr>
<tr>
<td>A 6.3 Preliminary measurements of the iron core</td>
<td>93</td>
</tr>
<tr>
<td>A 6.4 Special measuring circuits</td>
<td>94</td>
</tr>
<tr>
<td>A 6.5 Examples</td>
<td>95</td>
</tr>
</tbody>
</table>

Separate source AC withstand voltage test or Applied voltage test	97
7 Appendix	98
7.1 References / Standards	98
7.2 Purpose of the test	98
7.3 General	98
7.4 Principle and measuring circuit	99
7.5 Measuring procedure	99
7.6 Measuring Uncertainty	100

8 Induced voltage tests	101
8.1 References / Standards	101
8.2 Purpose of the test	102
8.3 General	102
8.4 Principle and test circuit	107
8.5 Measuring procedure	109
8.6 Measuring uncertainty	114

9 Partial Discharge Measurements	115
9.1 References / Standards	115
9.2 Purpose of measurement	116
9.3 General	116
9.4 Principle of PD measurement	117

PD measurement on transformers	123
PD measuring procedure	126
Procedure for Investigation of PD sources	128
Detection of acoustical PD signals	133
Detailed investigation of the PD source	134
Measuring uncertainty	139

A 9 Appendix	140
A 9.1 Physics of partial discharge	140
A 9.2 Principle of quasi-integration	143
A 9.3 True charge, apparent charge and measureable charge	147
A 9.4 Typical external noise sources	149
A 9.5 Advanced PD system	151
A 9.6 Detection of acoustical PD signals	154

| A 9.7 Localization of the PD source using analysis of the electrical signals | 157 |
| A 9.8 Corona shielding | 160 |

10 Lightning impulse and switching impulse test	161
10.1 References /Standards	162
10.2 Purpose of the test	162
10.3 General	163
10.4 Impulse shape	165
10.5 Test connections	167
10.6 Test procedure / recordings	171
10.7 Assessing the test results and failure detection	174
10.8 Calibration – impulse measuring system / measuring uncertainty	175

A 10 Appendix	176
A 10.1 Waveshape and its assessment	176
A 10.2 Generation of high impulse voltages	177
A 10.3 Pre-calculation of impulse waveform	180
A 10.4 Test circuit parameters for switching impulse test	183

A 10.5 Measuring high impulse voltages	183
A 10.6 Calibrating the impulse voltage divider ratio	190
A 10.7 Use of a Sphere-gap for checking the scale factor of an impulse peak voltmeter	190
A 10.8 Measuring the impulse current	193

| A 10.9 Earthing the impulse circuit | 194 |
14 Sound level measurement 247

14.1 References / Standards 248
14.2 Purpose of measurement 248
14.3 General [7], [51], [106] 248
14.4 Measurement and measuring circuit 249
14.5 Measuring procedure 250
14.5 Measuring uncertainties 254

A 14 Appendix 255
A 14.1 Human perception of sound [106] 255
A 14.3 Addition of no-load sound and load sound [7] 256
A 14.4 Definitions [7] 256
A 14.5 Calculation of the environmental correction factor K [51] 258
A 14.6 The calculation of sound power level, example 259
A 14.7 Far-field calculations 260

15 Test on on-load tap-changers and dielectric tests on auxiliary equipment 261

15.1 References / Standards 262
15.2 Purpose of the test / General 262
15.3 Test procedure [1] / Test circuit 262
15.4 Test of auxiliary equipment [3], [50] 263

16 Measurements of the harmonics of the no-load current 265

16.1 References / Standards 266
16.2 Purpose of measurement 266
16.3 General 266
16.4 The measuring circuit [100] 267
16.5 The measuring procedure 267
15.6 Examples 267

A 16 Appendix 268
A 16.1 The relationship between flux density, no-load current and harmonic content. [106] 268
A 16.2 Example 268

17 Measurement of insulation resistance 271

17.1 References / Standards 272
17.2 Purpose of the measurement 272
17.3 General 272
17.4 The measuring circuit / The measuring procedure [51] 273

A 17 Appendix 274

18 Measurement of dissipation factor (tanδ) of the insulation system capacitances 275

18.1 References / Standards 276
18.2 Purpose of the measurement 276
18.3 General 276
18.4 The measuring circuit / The measuring procedure [51] 277

A 18 Appendix 280
A 18.1 Examples 280

Index 283

References / Bibliography 289
Standards 290
International Electrotechnical Commission (IEC) 290
IEEE / ANSI Standards 291
Books 291
Technical Reviews 292

Editors 293

Explanation to the vocabulary
The authors vocabulary in the test book is based on IEC Standards. There are no really important differences between the vocabulary applied in IEC and IEEE (ANSI) Standards.
The only exception is the use of the words „earth”/“earthed” (according to IEC) and „ground”/“grounded” (according to IEEE).
Testing of Power Transformers

1. Introduction
1. Introduction

1.1 Why transformer testing?

Tests serve as an indication of the extent to which a transformer is able to comply with a customer's specified requirements; for example:

- Loading capability
- Dielectric withstand
- Further operating characteristics

Tests are also part of a manufacturer's internal quality assurance program. A manufacturer's own criteria have to be fulfilled in addition to requirements specified by customers and applicable standards.

Differing requirements are generally combined and published in national and international standards. The primary Standards Organizations are IEC and ANSI. These standards are often used directly to develop national standards. IEC is the abbreviation for International Electro-technical Commission and ANSI stands for American National Standard Institute, Inc.

In the electric area, ANSI has to a great extent delegated the writing and publication of standards to IEEE, the Institute of electric and Electronics Engineers, Inc.

The IEC and IEEE Standards specify the respective tests that verify compliance with the above requirements; e.g.:

- Temperature rise tests to verify loading capability, see section 11
- Dielectric tests to demonstrate the integrity of the transformer when subjected to dielectric stresses and possible over-voltages during normal operation, see section 2.
- No-load and load loss measurements, short-circuit impedance measurements, etc. to verify other operating characteristics.

1.2 Types of tests

The IEC 60076-1 [1] and IEEE Std C57.12.00 [50] Standards distinguish between the following types of tests:

- Routine tests
- Type- or design¹ tests
- Special- or other¹ tests
1. Introduction

Routine tests

Routine tests are tests required for each individual transformer.

Typical examples:
Resistance measurements, voltage ratio, loss measurements, etc.

Type- or design tests

Type or design\(^1\) tests are conducted on a transformer which is representative\(^2\) of other transformers, to demonstrate that these transformers comply with specified requirements not covered by routine tests.

Typical example:
Temperature rise test.

Special- or other tests

Special- or other\(^1\) tests are tests other than type- or routine tests agreed to by the manufacturer and the purchaser.

Typical example:
Measurement of zero-sequence impedance, sound level measurement, etc.

1 Term used in the IEEE Standards [50], [51]

2 “Representative” means identical in rating and construction, but transformers with minor deviations in rating and other characteristics may also be considered to be representative [1].

Note:
Depending on the respective standard and the maximum system voltage, certain dielectric tests, such as lightning impulse tests, for example, may either be routine tests, type tests or special tests, (see section 2, table 1 and 2). The same is true for switching impulse tests.

1.3 Test sequence

As the Standards do not lay down the complete test sequence in an obligatory basis, it is often the source of long discussions between customer and manufacturer.

On the other hand the test sequence for dielectric tests is generally fixed in IEC and IEEE Standards.

Following all existing standard regulations and recommendations concerning this matter followed by recommendations of the authors, see section 1.3.3.
1. Introduction

1.3.1 IEC Standards

IEC 60076-3 [2000] [3], clause 7.3

*The dielectric tests shall, where applicable and not otherwise agreed upon, be performed in the sequence as given below:

- Switching impulse test
- Lightning impulse test (line terminals)
- Lightning impulse test (neutral terminal)
- Separate source AC withstand test (Applied voltage test)
- Short-duration induced AC withstand voltage test including partial discharge measurement
- Long-duration induced AC voltage test including partial discharge measurement*

This test sequence is in principle obligatory; but allows other agreements between customer and manufacturer.

IEC 60076-1 (2000) [1], clause 10.5

In deciding the place of the no-load test in the complete test sequence, it should be borne in mind that no-load measurements performed before impulse tests and/or temperature rise tests are, in general, representative of the average loss level over long time in service. Measurements after other tests sometimes show higher values caused by spitting between laminate edges during impulse test, etc. Such measurements may be less representative of losses in service.

This test sequence is a recommendation and not obligatory.

1.3.2 IEEE Standards

IEEE Std C57.12.90 [51], clause 4.3

To minimize potential damage to the transformer during testing, the resistance, polarity, phase relation, ratio, no-load loss and excitation current, impedance, and load loss test (and temperature-rise tests, when applicable) should precede dielectric tests. Using this sequence, the beginning tests involve voltages and currents, which are usually reduced as compared to rated values, thus tending to minimize damaging effects to the transformer.

Also this test sequence is recommendation and not obligatory.

IEEE Std C57.12.90 [51], clause 10.1.5.1

*Lightning impulse voltage tests, when required, shall precede the low-frequency tests. Switching impulse voltage tests, when required, shall also precede the low-frequency tests.

For class II power transformers, the final dielectric test to be performed shall be the induced voltage test.*

This test sequence is obligatory.
1.3.3 Recommendation of the authors

Taking into account all IEC- and IEEE regulations and recommendations and based on their own experience the authors propose the following test sequence:

- Ratio, polarity and phase displacement
- Resistance measurement
- No-load test (followed, if specified, by the sound level test)
- Load loss and impedance
- Zero-sequence impedance test (if specified)
- Dielectric tests:
 - Switching impulse (when required)
 - Lightning impulse test (when required)
 - Separate source AC voltage test
 - Induced voltage test including partial discharge test.

The test sequence of the tests preceding the dielectric test can be slightly changed due to test field loading or other operational reasons.

1.4 Remarks concerning this test book

This test book has an initial chapter covering dielectric integrity in general (section 2), since verification of dielectric integrity is the result of different types of successful dielectric tests. The first chapter is then followed by descriptions of each individual test.

The individual tests and measurements are covered in greater detail in the following sections (sections 3 to 18):

- Measurement of winding resistance (R), section 3.
- Measurement of voltage ratio and vector group (phase displacement) (R), section 4.
- Measurement of impedances and load losses (R), section 5.
- Measurement of no-load loss and no-load current (R), section 6.
- Separate source AC withstand voltage test (R), section 7.
- Induced voltage test (R alternatively also S), section 8.
- Partial discharge test (R alternatively also S), section 9.
- Impulse test (R and T), section 10.
- Temperature rise test (T), section 11.
1. Introduction

- Measurement of zero-sequence impedances (S), section 12.
- Short circuit withstand test (S), section 13.
- Sound level measurement (S), section 14.
- Test on on-load tap-changers and dielectric tests on auxiliary equipment (R), section 15.
- Measurements of the harmonics of the no-load current (S), section 16.
- Measurement of insulation resistance (S), section 17.
- Measurement of the dissipation factor ($\tan \delta$) of the insulation capacitances or insulation power-factor tests (S), section 18.

Note:

R = Routine test
T = Type test
S = Special test

The individual test items may be interwoven and carried out as part of a combined average to verify certain characteristics, such as resistance measurement.

Several aspects have been considered regarding the tests and test procedures, such as:

- Purpose of the test and what is to be achieved by a specific test.
- Means of generating the supply voltage and current for the test.
- Means to measure or indicate the test object response.
- Means to verify the integrity of the test object.
- Means to verify presence or absence of damage caused by a specific test.

Symbols and abbreviations in this test book follow present IEC Standards where applicable.