On Groups with Chain Conditions on Subnormal Subgroups

Falih A.M. Aldosray
Department of Mathematics
Umm AlQura University,
Makkah, Saudi Arabia
fadosary@uqu.edu.sa

Abduallah A. Abdoh
Department of Mathematics
Umm AlQura University
Makkah, Saudi Arabia
aaabduh@uqu.edu.sa

Abstract: Groups with chain Conditions on subnormal subgroups have been investigated by many authors. In this paper we give a necessarily and sufficient conditions under which a group G satisfy the ascending or the descending chain conditions on subnormal subgroups.

Keywords: Prime Subgroups, Groups with chain Conditions on subnormal subgroups.

1. INTRODUCTION

Let G be a group. A subgroup P of G is said to be a primesubgroup of G if P is normal in G and $[A,B] \subseteq P$ with $A,B < G$ implies that either $A \subseteq P$ or $B \subseteq P$. Here $[,]$ is the commutator. Following Scukin [11] we say that a group G is prime if $[A,B] \neq 1$ whenever A and B are nontrivial normal subgroups of G, see also Dark [5]. Then P is prime in G if and only if G/P is a prime group.

We define the soluble radical $\sigma(G)$ to be the product of all soluble normal subgroups of G. We say that G is semisimple if $\sigma(G) = 1$. The terms of the derived and lower central series of G are denoted $G^{(n)}$ and $\gamma_n(G)$ as in Robinson [8]. A prime subgroup P of G is said to be a minimal prime subgroup belonging to a normal subgroup H if $P \supseteq H$ and if there is no prime subgroup between H and P, see Kurata [6, p 205]. The radical $r(H)$ of a normal subgroup in G is the intersection of all minimal prime subgroups belonging to H, see Kurata [6, p 206]. If G is unclear we write this as $r(H)$. It follows that $r(H)$ is the intersection of all prime subgroups containing H, see Kurata [6, Proposition 1.13 p.207]. We write r_G. for $r_G(1).$, the intersection of all minimal prime subgroups of G.

We denote by $\text{Max} - \triangleleft$ the class of all groups satisfying the maximal condition on normal subgroups (often called Max-n), with similar definition for $\text{Min} - \triangleleft$, $\text{Max} - \triangleleft^n$, $\text{Min} - \triangleleft^n$. The classes of all groups satisfying the maximal (respectively minimal) condition on subnormal subgroups are denoted by Max-sn, and Min-sn, following Robinson[8], which is also our source for any other unexplained notation and determined by the corresponding chain condition, so that G satisfies Min-sn and $G \in \text{Min} - sn$ are equivalent statement.

2. RESULT

Proposition 1: For all group G,

(a) $\sigma(G) \subseteq r_G$.

(b) If $G \in \text{Max} - \triangleleft$, then $\sigma(G) = r_G$.

Proof

(a) Let H be a soluble normal subgroup of G. Then $H^{(n)} = 1$ for some $n \geq 0$. In particular $H^{(n)} \subseteq P$ for every prime subgroup P. Inductively we see that $H \subseteq P$, whence $\sigma(G) \subseteq r_G$.

©ARC
Let \(R = r_G \) and suppose that \(R \) not soluble. Let \(C \) be the collection of all normal subgroups \(N \) of \(G \) such that \(R^{(n)} \not\subset N \) for all integers \(n \geq 0 \). Then \(C \) is non-empty since \(1 \in C \). Hence \(C \) has a maximal element say \(p \). We claim that \(p \) is prime. Suppose not, then there are normal subgroups \(A, B \) of \(G \) such that \(A \not\subset p \) and \(B \not\subset p \) but \([A, B] \subset p \). Therefore \(A, B \) is soluble. Hence \(R^{(n)} \subset AP \) and \(R^{(m)} \subset BP \) for some integers \(m, n \geq 0 \). Let \(s = \max \{m, n\} \). Then \(R^{(s+1)} \subset [AP, BP] = [AP, B][AP, P] = [A, B][P, B][A, P][P, P] \subset P \). Hence \(AP \subset P \) or \(BP \subset P \), which implies that \(A \subset P \) or \(B \subset P \), a contradiction. Hence \(p \) is prime and \(p \subset \sigma(G) \). But \(\sigma(G) \subset R \) by (a), so \(R = \sigma(G) \) as claimed.

Proposition 2

(a) Let \(G \in Max^– <1^3 \). Then \(\sigma(G) \) is soluble and \(\sigma(G) \in Max \).

(b) Let \(G \in Min^– <2^2 \). Then \(\sigma(G) \) is soluble and \(\sigma(G) \in Min \).

Proof:

(a) Since in particular \(G \in Max^– <1 \) it follows that \(S = \sigma(G) \) is the product of finitely many soluble normal subgroups, hence is soluble. Because \(G \in Max^– <3^3 \) we have \(S \in Max^– <2^2 \).

Each derived factor \(S^{(s)} \) is abelian with \(Max^– <1 \), hence with \(Max \). By E-closure of \(Max \), we have \(S \in Max^– <1 \).

(b) By Theorem 5.49.1 or Robinson [8] p. 148 we have \(Min^– <2^2 = Min^– sn \). Now apply the analogous argument to part (a) with Max replaced by Min.

Proposition 3 Let \(G \) be a group and \(S \) be respectively the set of normal subgroups, subnormal subgroups, n-step subnormal subgroups of \(G \). Suppose that \(N_i < G \) (\(i = 1, \ldots, m \)) and \(\bigcap_{i=1}^{m} N_i = 1 \).

Let \(S = \{ HN_i \cap N_i : H \in S \} \in Max – S \) (respectively \(Min – S \)) for all \(I \),

then \(G \in Max – S \) (respectively \(Min – S \)).

Proof: This is equivalent to \(R_0 \)-closure of these classes, see Robinson[8] Corollary to Lemma 1.48, p.39.

Proposition 4 A group \(G \) is a sub-direct product of a family of groups \(\{ G_{\alpha} \}_{\alpha \in A} \) if and only if for each \(\alpha \in A \) there is a surjective homomorphism \(g_{\alpha} : G \rightarrow G_{\alpha} \) such that \(\bigcap_{\alpha \in A} \ker g_{\alpha} = 1 \).

Proof: This is standard: compare Cohn [3, p.99]

Corollary 5 Let \(G \) be a group and let \(\{ G_{\alpha} \}_{\alpha \in A} \) be a family of normal subgroups of \(G \).

If \(\bigcap_{\alpha \in A} G_{\alpha} = 1 \), then \(G \) is a sub-direct product of the family of groups \(\{ G_{\alpha} \}_{\alpha \in A} \).

Proposition 6

(a) \(G \) is semi-simple with \(Max^– <1^2 \) (respectively \(Max^– sn \)) if and only if \(G \) is a sub-direct product of a finite number of prime groups satisfying \(Max^– <1 \) (respectively \(Max^– sn \)).

(b) \(G \) is semi-simple with \(Min^– <2^1 \) (respectively \(Min^– sn \)) if and only if \(G \) is a sub-direct product of a finite number of prime groups satisfying \(Min^– <2 \) (respectively \(Min^– sn \)).
Proof: (a) Let G be semisimple with $\text{Max} - \langle n \rangle$ (respectively $\text{Max} - \langle n \rangle$). Then $\sigma(G)$ = 1. By Kurata [3] Proposition 4p 214 we have $r_G = \bigcap_{i=1}^{m} P_i$ where the P_i are minimal prime subgroups of G. But by Proposition 1(b) $\sigma(G) = r_G$, so $\sigma(G) = 1$. Since P_i is a prime subgroup the quotient G/P_i is prime, and by Q-closure it lies in $\text{Max} - \langle n \rangle$ (respectively $\text{Max} - \langle n \rangle$).

By Corollary 5 G is a subdirect product of prime groups satisfying $\text{Max} - \langle n \rangle$ (respectively $\text{Max} - \langle n \rangle$).

To prove the converse suppose that G is a subdirect product of finitely many prime groups G_i where $i=1,\ldots,m$ and each G_i satisfies $\text{Max} - \langle n \rangle$ (respectively $\text{Max} - \langle n \rangle$). Let $g_i : G \to G_i$ be the homomorphism of Proposition 4. For each I we have $G/\ker g_i \cong G_i$, and G_i is prime. So $\ker g_i$ is a prime subgroup of G. Thus $r_G \subseteq \ker g_i$ for all i, so $r_G = 1$. By proposition 1(a) also $\sigma(G) = 1$, so G is semisimple. That $G \in \text{Max} - \langle n \rangle$ (respectively $\text{Max} - \langle n \rangle$) follows from Proposition 3.

(b) Let G be semisimple with $\text{Min} - \langle n \rangle$ (respectively $\text{Min} - \langle n \rangle$). Then G is has only a finite number of minimal normal subgroups where $i=1,\ldots,r$. Let M_j be a normal subgroup of G that is maximal with respect to not containing M_j. We claim that P_i is a prime subgroup of G. If not there exist normal subgroups A, B of G such that $A \nsubseteq P_i$, $B \nsubseteq P_i$, but $[A, B] \subseteq P_i$. Now $P_i \subseteq AP_i$ and $P_i \subseteq BP_i$, so by the choice of P_i we have $AP_i \supseteq M_i$ and $BP_i \supseteq M_j$. Therefore $\gamma_2 M_i \subseteq [AP_i, BP_i] \subsetneq P_i$. But $\gamma_2 M_i \neq 1$ since G is semi-simple so $\gamma_2 M_i = M_i \subseteq P_i$. Therefore P_i is a prime subgroup of G and G/P_i is a prime group. If $\bigcap_{i=1}^{m} P_i \neq 1$, then this intersection contains some minimal subgroup M_j. But $M_j \nsubseteq P_i$, a contradiction. Therefore $\bigcap_{i=1}^{m} P_i = 1$ and Corollary 5 implies that G is a sub-direct product of a finite number of prime groups with $\text{Min} - \langle n \rangle$ (respectively $\text{Min} - \langle n \rangle$). The converse is as in part (a).

We now come to our main theorem:

Theorem 7 Let G be a group. Then

(a) $G \in \text{Max} - \langle n \rangle$ (respectively $\text{Max} - \langle n \rangle$) if and only if

(i) $\sigma(G)$ is soluble with Max.

(ii) $G/\sigma(G)$ is a sub-direct product of finitely many prime groups satisfying

$\text{Max} - \langle n \rangle$ (respectively $\text{Max} - \langle n \rangle$)

(b) $G \in \text{Min} - \langle n \rangle$ (respectively (or equivalently $\text{Min} - \langle n \rangle$) if and only if

(i) $\sigma(G)$ is soluble with Min.

(ii) $G/\sigma(G)$ is a sub-direct product of finitely many prime groups satisfying

$\text{Min} - \langle n \rangle$ (respectively $\text{Min} - \langle n \rangle$)

Proof: Combine Propositions 2 and 6.
Corollary 8: G is a finite group if and only if $\sigma(G)$ is finite and $G/\sigma(G)$ is a subdirect product of finitely many finite prime groups.

ACKNOWLEDGEMENTS

The authors would like to thank Institute of Scientific Research and Revival of Islamic Heritage at Umm Al-Qura University (43305001) for the financial support.

REFERENCES

[4]. DaeHyumPaek, Chain conditions for subnormal subgroups of infinite order or index, Comm. In Algebra 29(7) 2001, 3069-3081.
[12]. H. Smith, Nilpotent by finite exponent groups with all subgroups subnormal, J.Group Theory 3, 47-56,(2000).
[13]. H. Wielandt, Eine verallgemeinerung der invarianten untergruppen, Math Z.45, 1939 209-244.