COP4020
Programming Languages

Functional Programming

Prof. Chris Lacher

Modified from Robert van Engelen
Overview

- What is functional programming?
- Historical origins of functional programming
- Functional programming today
- Concepts of functional programming
- Functional programming with Scheme
- Learn (more) by example
What is Functional Programming?

- Functional programming is a declarative programming style (programming paradigm)

 □ Pro: flow of computation is declarative, i.e. more implicit
 □ Pro: promotes building more complex functions from other functions that serve as building blocks (component reuse)
 □ Pro: behavior of functions defined by the values of input arguments only (no side-effects via global/static variables)

 □ Cons: function composition is (considered to be) stateless
 □ Cons: programmers prefer imperative programming constructs such as statement composition, while functional languages emphasize function composition
Concepts of Functional Programming

- Functional programming defines the outputs of a program purely as a mathematical function of the inputs with no notion of internal state (no side effects)
 - A *pure function* can be counted on to return the same output each time we invoke it with the same input parameter values
 - No global (statically allocated) variables
 - No explicit (pointer) assignments
 - Dangling pointers and un-initialized variables cannot occur
 - Example pure functional programming languages: Miranda, Haskell, and Sisal
- Non-pure functional programming languages include “imperative features” that cause side effects (e.g. destructive assignments to global variables or assignments/changes to lists and data structures)
 - Example: Lisp, Scheme, and ML
Functional Language Constructs

- Building blocks are functions
- No statement composition
 - Function composition
- No variable assignments
 - But: can use local “variables” to hold a value assigned once
- No loops
 - Recursion
 - List comprehensions in Miranda and Haskell
 - But: “do-loops” in Scheme
- Conditional flow with if-then-else or argument patterns
- Functional languages can be typed (Haskell) or untyped (Lisp)

Haskell examples:

```haskell
gcd a b
| a == b = a
| a > b = gcd (a-b) b
| a < b = gcd a (b-a)

fac 0 = 1
fac n = n * fac (n-1)

member x []   = false
member x (y:xs)
  | x == y = true
  | x <> y = member x xs
```
Theory and Origin of Functional Languages

- Church's thesis:
 - All models of computation are equally powerful
 - Turing's model of computation: Turing machine
 - Reading/writing of values on an infinite tape by a finite state machine
 - Church's model of computation: Lambda Calculus
 - Functional programming languages implement Lambda Calculus

- Computability theory
 - A program can be viewed as a constructive proof that some mathematical object with a desired property exists
 - A function is a mapping from inputs to output objects and computes output objects from appropriate inputs
 - For example, the proposition that every pair of nonnegative integers (the inputs) has a greatest common divisor (the output object) has a constructive proof implemented by Euclid's algorithm written as a "function"
Impact of Functional Languages on Language Design

Useful features are found in functional languages that are often missing in procedural languages or have been adopted by modern programming languages:

- **First-class function values**: the ability of functions to return newly constructed functions
- **Higher-order functions**: functions that take other functions as input parameters or return functions
- **Polymorphism**: the ability to write functions that operate on more than one type of data
- **Aggregate constructs** for constructing structured objects: the ability to specify a structured object in-line such as a complete list or record value
- **Garbage collection**
Functional Programming Today

- Significant improvements in theory and practice of functional programming have been made in recent years
 - Strongly typed (with type inference)
 - Modular
 - Sugaring: imperative language features that are automatically translated to functional constructs (e.g. loops by recursion)
 - Improved efficiency

- Remaining obstacles to functional programming:
 - Social: most programmers are trained in imperative programming and aren’t used to think in terms of function composition
 - Commercial: not many libraries, not very portable, and no IDEs
Applications

Many (commercial) applications are built with functional programming languages based on the ability to manipulate symbolic data more easily

Examples:
- Computer algebra (e.g. Reduce system)
- Natural language processing
- Artificial intelligence
- Automatic theorem proving
- Algorithmic optimization of functional programs
LISP and Scheme

- The original functional language and implementation of Lambda Calculus
- Lisp and dialects (Scheme, common Lisp) are still the most widely used functional languages
- Simple and elegant design of Lisp:
 - Homogeneity of programs and data: a Lisp program is a list and can be manipulated in Lisp as a list
 - Self-definition: a Lisp interpreter can be written in Lisp
 - Interactive: user interaction via "read-eval-print" loop
Scheme

- Scheme is a popular Lisp dialect
- Lisp and Scheme adopt a form of prefix notation called *Cambridge Polish* notation
- Scheme is case insensitive
- A Scheme expression is composed of
 - Atoms, e.g. a literal number, string, or identifier name,
 - Lists, e.g. '(a b c)
 - Function invocations written in list notation: the first list element is the *function* (or operator) followed by the arguments to which it is applied:

 \[(function \arg_1 \arg_2 \arg_3 \ldots \arg_n)\]

 - For example, \(\sin(x^2 + 1)\) is written as \((\sin (+ (* x x) 1))\)
Read-Eval-Print

- The "Read-eval-print" loop provides user interaction in Scheme
- An expression is read, evaluated, and the result printed
 - Input: 9
 - Output: 9
 - Input: (+ 3 4)
 - Output: 7
 - Input: (+ (* 2 3) 1)
 - Output: 7
- User can load a program from a file with the load function

 (load "my_scheme_program")

Note: a file should use the .scm extension
Working with Data Structures

- An expression operates on values and compound data structures built from atoms and lists
- A value is either an atom or a compound list
- Atoms are
 - Numbers, e.g. 7 and 3.14
 - Strings, e.g. "abc"
 - Boolean values #t (true) and #f (false)
 - Symbols, which are identifiers escaped with a single quote, e.g. 'y
 - The empty list ()
- When entering a list as a literal value, escape it with a single quote
 - Without the quote it is a function invocation!
 - For example, '(a b c) is a list while (a b c) is a function application
 - Lists can be nested and may contain any value, e.g. '(1 (a b) "s")
Checking the Type of a Value

The type of a value can be checked with

- (boolean? x) ; is x a Boolean?
- (char? x) ; is x a character?
- (string? x) ; is x a string?
- (symbol? x) ; is x a symbol?
- (number? x) ; is x a number?
- (list? x) ; is x a list?
- (pair? x) ; is x a non-empty list?
- (null? x) ; is x an empty list?

Examples

- (list? '(2)) ⇒ #t
- (number? "abc") ⇒ #f

Portability note: on some systems false (#f) is replaced with ()
Working with Lists

- \((\text{car } xs)\) returns the head (first element) of list \(xs\)
- \((\text{cdr } xs)\) (pronounced "coulder") returns the tail of list \(xs\)
- \((\text{cons } x \; xs)\) joins an element \(x\) and a list \(xs\) to construct a new list
- \((\text{list } x_1 \; x_2 \ldots \; x_n)\) generates a list from its arguments

Examples:
- \((\text{car } '(2 \ 3 \ 4)) \Rightarrow 2\)
- \((\text{car } '(2)) \Rightarrow 2\)
- \((\text{car } '()) \Rightarrow \text{Error}\)
- \((\text{cdr } '(2 \ 3)) \Rightarrow (3)\)
- \((\text{car } (\text{cdr } '(2 \ 3 \ 4))) \Rightarrow 3\); also abbreviated as \((\text{cadr } '(2 \ 3 \ 4))\)
- \((\text{cdr } (\text{cdr } '(2 \ 3 \ 4))) \Rightarrow (4)\); also abbreviated as \((\text{cddr } '(2 \ 3 \ 4))\)
- \((\text{cdr } '(2)) \Rightarrow ()\)
- \((\text{cons } 2 \; '(3)) \Rightarrow (2 \ 3)\)
- \((\text{cons } 2 \; '(3 \ 4)) \Rightarrow (2 \ 3 \ 4)\)
- \((\text{list } 1 \ 2 \ 3) \Rightarrow (1 \ 2 \ 3)\)

COP4020 Fall 2013
The “if” Special Form

- Special forms resemble functions but have special evaluation rules
 - Evaluation of arguments depends on the special construct
- The “if” special form returns the value of thenexpr or elseexpr depending on a condition

\[(\text{if } \text{condition} \ \text{thenexpr} \ \text{elseexpr})\]

- Examples
 - (if #t 1 2) ⇒ 1
 - (if #f 1 "a") ⇒ "a"
 - (if (string? "s") (+ 1 2) 4) ⇒ 3
 - (if (> 1 2) "yes" "no") ⇒ "no"
The “cond” Special Form

- A more general if-then-else can be written using the “cond” special form that takes a sequence of \((condition \ value)\) pairs and returns the first \(value x_i\) for which \(condition c_i\) is true:

\[
(\text{cond } (c_1 \ x_1) \ (c_2 \ x_2) \ \ldots \ (\text{else} \ x_n))
\]

- Examples
 - \((\text{cond } (#f \ 1) \ (#t \ 2) \ (#t \ 3)) \Rightarrow 2\)
 - \((\text{cond } ((< \ 1 \ 2) \ "one") \ ((\geq \ 1 \ 2) \ "two")) \Rightarrow "one"\)
 - \((\text{cond } ((< \ 2 \ 1) \ 1) \ ((= \ 2 \ 1) \ 2) \ (\text{else} \ 3)) \Rightarrow 3\)

- Note: “else” is used to return a default value
Logical Expressions

- Relations
 - Numeric comparison operators $<$, $<=$, $=$, $>$, $<=$, and $<>$

- Boolean operators
 - $(\text{and } x_1 x_2 \ldots x_n)$, $(\text{or } x_1 x_2 \ldots x_n)$

- Other test operators
 - $(\text{zero? } x)$, $(\text{odd? } x)$, $(\text{even? } x)$
 - $(\text{eq? } x_1 x_2)$ tests whether x_1 and x_2 refer to the same object
 - $(\text{eq? 'a 'a}) \Rightarrow \text{#t}$
 - $(\text{eq? '(a b) '(a b)}) \Rightarrow \text{#f}$
 - $(\text{equal? } x_1 x_2)$ tests whether x_1 and x_2 are structurally equivalent
 - $(\text{equal? 'a 'a}) \Rightarrow \text{#t}$
 - $(\text{equal? '(a b) '(a b)}) \Rightarrow \text{#t}$
 - $(\text{member } x \ x\!\!\text{s})$ returns the sublist of $x\!\!\text{s}$ that starts with x, or returns $()$
 - $(\text{member 5 '(a b)}) \Rightarrow ()$
 - $(\text{member 5 '(1 2 3 4 5 6)}) \Rightarrow (5 6)$
Lambda Calculus: Functions = Lambda Abstractions

- A lambda abstraction is a nameless function (a mapping) specified with the lambda special form:

 (lambda args body)

 where args is a list of formal arguments and body is an expression that returns the result of the function evaluation when applied to actual arguments

- A lambda expression is an unevaluated function

- Examples:
 - (lambda (x) (+ x 1))
 - (lambda (x) (* x x))
 - (lambda (a b) (sqrt (+ (* a a) (* b b)))))
Lambda Calculus: Invocation = Beta Reduction

A lambda abstraction is applied to actual arguments using the familiar list notation

\[(function \text{ arg}_1 \text{ arg}_2 \ldots \text{ arg}_n)\]

where function is the name of a function or a lambda abstraction

Beta reduction is the process of replacing formal arguments in the lambda abstraction’s body with actuals

Examples

\[
\begin{align*}
((\text{lambda} (x) (* x x)) 3) & \Rightarrow (* 3 3) \Rightarrow 9 \\
((\text{lambda} (f a) (f (f a))) (\text{lambda} (x) (* x x)) 3) & \Rightarrow (f (f 3)) \Rightarrow (f (\text{lambda} (x) (* x x)) 3) \Rightarrow (f 9) \Rightarrow (* 9 9) \Rightarrow 81
\end{align*}
\]
Defining Global Names

- A global name is defined with the “define” special form

\[(\text{define } \text{name } \text{value})\]

- Usually the values are functions (lambda abstractions)

Examples:

- (define my-name "foo")
- (define determiners "("a" "an" "the")")
- (define sqr (lambda (x) (* x x)))
- (define twice (lambda (f a) (f (f a))))
- (twice sqr 3) ⇒ ((lambda (f a) (f (f a))) (lambda (x) (* x x)) 3) ⇒ … ⇒ 81
Using Local Names

- The “let” special form (let-expression) provides a scope construct for local name-to-value bindings

\[
\text{(let ((name}_1 x_1) (name}_2 x_2) \ldots (name}_n x_n) \text{) expression}
\]

where \(name_1, name_2, \ldots, name_n \) in expression are substituted by \(x_1, x_2, \ldots, x_n \)

- Examples
 - (let ((plus +) (two 2)) (plus two two)) \(\Rightarrow 4 \)
 - (let ((a 3) (b 4)) (sqrt (+ (* a a) (* b b)))) \(\Rightarrow 5 \)
 - (let ((sqr (lambda (x) (* x x))) (sqrt (+ (sqr 3) (sqr 4))))) \(\Rightarrow 5 \)
Local Bindings with Self References

- A global name can simply refer to itself (for recursion)
 - `(define fac (lambda (n) (if (zero? n) 1 (* n (fac (- n 1))))))`
- A let-expression cannot refer to its own definitions
 - Its definitions are not in scope, only outer definitions are visible
- Use the letrec special form for recursive local definitions

\[
(\text{letrec} \ (\ (name_1 \ x_1) \ (name_2 \ x_2) \ \ldots \ (name_n \ x_n) \) \ \text{expr})
\]

where \(name_i \) in \(expr \) refers to \(x_i \)

- Examples
 - `(letrec ((fac (lambda (n) (if (zero? n) 1 (* n (fac (- n 1))))))
 (fac 5)) ⇒ 120`
I/O

- (display x) prints value of x and returns an unspecified value
 - (display "Hello World!")
 Displays: "Hello World!"
 - (display (+ 2 3))
 Displays: 5

- (newline) advances to a new line

- (read) returns a value from standard input
 - (if (member (read) '(6 3 5 9)) "You guessed it!" "No luck")
 Enter: 5
 Displays: You guessed it!
Blocks

- \((\text{begin } x_1 \ x_2 \ldots \ x_n)\) sequences a series of expressions \(x_i\), evaluates them, and returns the value of the last one \(x_n\)

- Examples:
 - (begin
 (display "Hello World!"
 (newline)
)
 - (let ((x 1)
 (y (read))
 (plus +)
)
 (begin
 (display (plus x y))
 (newline)
)
)
Do-loops

- The “do” special form takes a list of triples and a tuple with a terminating condition and return value, and multiple expressions \(x_i \) to be evaluated in the loop

\[
\text{(do (triples) (condition ret-expr) } x_1 x_2 \ldots x_n)\]

- Each triple contains the name of an iterator, its initial value, and the update value of the iterator

- Example (displays values 0 to 9)

  ```lisp
  (do ( (i 0 (+ i 1)) )
  ( (>= i 10) "done"
  (display i)
  (newline)
  )
  ```
Higher-Order Functions

- A function is a higher-order function (also called a functional form) if
 - It takes a function as an argument, or
 - It returns a newly constructed function as a result
- For example, a function that applies a function to an argument twice is a higher-order function
 - (define twice (lambda (f a) (f (f a))))
- Scheme has several built-in higher-order functions
 - (apply \f\ \xs) takes a function \f\ and a list \xs\ and applies \f\ to the elements of the list as its arguments
 - (apply '+ '(3 4)) \Rightarrow 7
 - (apply (lambda (x) (* x x)) '(3))
 - (map \f\ \xs) takes a function \f\ and a list \xs\ and returns a list with the function applied to each element of \xs
 - (map odd? '(1 2 3 4)) \Rightarrow (#t #f #t #f)
 - (map (lambda (x) (* x x)) '(1 2 3 4)) \Rightarrow (1 4 9 16)
Non-Pure Constructs

- Assignments are considered non-pure in functional programming because they can change the global state of the program and possibly influence function outcomes.
- The value of a pure function only depends on its arguments.
- `(set! name x)` re-assigns `x` to local or global `name`.
 - `(define a 0)`
 - `(set! a 1)`; overwrite with 1
 - `(let ((a 0))
 (begin
 (set! a (+ a 1)) ; increment a by 1
 (display a) ; shows 1
)
)`
- `(set-car! x xs)` overwrites the head of a list `xs` with `x`.
- `(set-cdr! xs ys)` overwrites the tail of a list `xs` with `ys`.

```scheme
(set! x xs) overwrites the head of a list xs with x
(set-cdr! xs ys) overwrites the tail of a list xs with ys
```

(COP4020 Fall 2013)
Example 1

- Recursive factorial:
 (define fact
 (lambda (n)
 (if (zero? n) 1 (* n (fact (- n 1)))))
)
)

- (fact 2) ⇒ (if (zero? 2) 1 (* 2 (fact (- 2 1)))))
 ⇒ (* 2 (fact 1))
 ⇒ (* 2 (if (zero? 1) 1 (* 1 (fact (- 1 1))))))
 ⇒ (* 2 (* 1 (fact 0)))
 ⇒ (* 2 (* 1 (if (zero? 0) 1 (* 0 (fact (- 0 1))))))
 ⇒ (* 2 (* 1 1))
 ⇒ 2
Example 2

- Iterative factorial
 (define iterfact
 (lambda (n)
 (do ((i 1 (+ i 1))) ; i runs from 1 updated by 1
 (f 1 (* f i)) ; f from 1, multiplied by i
 (> i n) f) ; until i > n, return f
) ; loop body is omitted
)
)
)
Example 3

- Sum the elements of a list
 (define sum
 (lambda (lst)
 (if (null? lst)
 0
 (+ (car lst) (sum (cdr lst)))))
)

- (sum '(1 2 3)) ⇒ (+ 1 (sum (2 3))
 ⇒ (+ 1 (+ 2 (sum (3)))))
 ⇒ (+ 1 (+ 2 (+ 3 (sum ()))))
 ⇒ (+ 1 (+ 2 (+ 3 0)))
Example 4

- Generate a list of \(n \) copies of \(x \)

\[
\text{(define fill}
\begin{align*}
&\text{(lambda (n x)} \\
&\quad \text{(if (= n 0)} \\
&\quad\quad () \\
&\quad\quad (\text{cons x (fill (- n 1) x)})) \\
&\end{align*}
\text{)}
\]

- \((\text{fill 2 'a})\) \(\Rightarrow\) \((\text{cons a (fill 1 a)})\)
 \(\Rightarrow\) \((\text{cons a (cons a (fill 0 a))})\)
 \(\Rightarrow\) \((\text{cons a (cons a ())})\)
 \(\Rightarrow\) \((\text{a a})\)
Example 5

- Replace x with y in list xs

  ```scheme
  (define subst
    (lambda (x y xs)
      (cond
        ((null? xs) ()
        ((eq? (car xs) x) (cons y (subst x y (cdr xs))))
        (else (cons (car xs) (subst x y (cdr xs))))
      )
    )
  )
  )

- $(\text{subst~}3\ 0\ '(8\ 2\ 3\ 4\ 3\ 5)) \Rightarrow '(8\ 2\ 0\ 4\ 0\ 5)$
Example 6

- Higher-order reductions
  
  (define reduce
    (lambda (op xs)
      (if (null? (cdr xs))
        (car xs)
        (op (car xs) (reduce op (cdr xs))))
    )
  )

- (reduce and '(#t #t #f)) ⇒ (and #t (and #t #f)) ⇒ #f
- (reduce * '(1 2 3)) ⇒ (* 1 (* 2 3)) ⇒ 6
- (reduce + '(1 2 3)) ⇒ (+ 1 (+ 2 3)) ⇒ 6
Example 7

- Higher-order filter operation: keep elements of a list for which a condition is true

  (define filter
    (lambda (op xs)
      (cond
        ((null? xs)   ())
        ((op (car xs)) (cons (car xs) (filter op (cdr xs))))
        (else            (filter op (cdr xs))))
    ))

  (filter odd? '(1 2 3 4 5)) \(\Rightarrow\) (1 3 5)
  (filter (lambda (n) (<> n 0)) '(0 1 2 3 4)) \(\Rightarrow\) (1 2 3 4)
Example 8

- Binary tree insertion, where () are leaves and (val left right) is a node

(define insert
  (lambda (n T)
    (cond
      ((null? T) (list n () ()))
      ((= (car T) n) T)
      ((> (car T) n) (list (car T) (insert n (cadr T)) (caddr T)))
      ((< (car T) n) (list (car T) (cadr T) (insert n (caddr T)))))
    )
  )
)

(insert 1 '(3 () (4 () ()))) ⇒ (3 (1 () ()) (4 () ()))