Defining Normal Cerebrospinal Fluid White Blood Cell Counts in Neonates and Young Infants: A Scholarly Pursuit

Lori A. Kestenbaum, Jessica L. Ebberson, Joseph J. Zorc, Caitlin LaRussa, Richard L. Hodinka & Samir S. Shah
Overview

- Evaluating a febrile neonate
- Meningitis
- Study background and methods
- Study results and conclusions
- Part II: Participating in Research as a Student
Overview

- Evaluating a febrile neonate
- Meningitis
- Study background and methods
- Study results and conclusions
- Part II: Participating in Research as a Student
Febrile Neonate

- Fever in a well appearing infant (0 to 60 days) without identifiable source of infection
- 10 to 15% will have a serious bacterial infection
- All are screened with:
 - Peripheral white blood cell count
 - Urinalysis
 - LUMBAR PUNCTURE
 - Chest X-ray/Stool smear for specific symptoms
Meningitis

- Bacterial: Group B Strep, E. Coli, Listeria
 - >6 weeks: Strep pneumoniae, Neisseria, H. flu
- Viral: Enterovirus, Herpes Simplex
- On exam: bulging fontanelle, irritability
- Studies:
 - CSF culture, cell count (white cells, glucose, protein)
 - Enterovirus or Herpes simplex PCR in certain circumstances
Interpreting CSF Values

<table>
<thead>
<tr>
<th>Type</th>
<th>Mononuclear:</th>
<th>Neutrophils:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bacterial</td>
<td>Hundreds</td>
<td>100s-1000s</td>
</tr>
<tr>
<td>Viral</td>
<td></td>
<td>Hundreds</td>
</tr>
<tr>
<td>TB</td>
<td>Mononuclear</td>
<td>100s</td>
</tr>
<tr>
<td>Cryptococcal</td>
<td></td>
<td>Few-100s</td>
</tr>
</tbody>
</table>
We know what is abnormal . . .

- But what is normal in the CSF?
 - 0 white blood cells?
 - 2?
 - 19?
 - 21?
Overview

- Evaluating a febrile neonate
- Meningitis
- Study background and methods
- Study results and conclusions
- Part II: Participating in Research as a Student
Lumbar puncture (LP) is routinely performed in the emergency department when evaluating febrile neonates.

Clinicians require reference values to interpret cerebrospinal fluid (CSF) white blood cell (WBC) counts.
Study Background

- Determining normal values in infants is ethically problematic
 - Invasive, potentially harmful procedure
 - Participants cannot offer consent or assent
- Reference values have been based on children who are not truly normal
Study Background

- Current reference values reflect expert opinion or cite studies with significant limitations.
- Limitations include small sample sizes and inclusion of patients with conditions known to cause CSF pleocytosis:
 - Traumatic lumbar puncture
 - Seizures
 - Bacterial infections
<table>
<thead>
<tr>
<th>Author</th>
<th>Age</th>
<th>N</th>
<th>Median</th>
<th>90th percentile</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sarff(^1)</td>
<td>≤10 days</td>
<td>87</td>
<td>5</td>
<td>-</td>
</tr>
<tr>
<td>Portnoy(^2)</td>
<td><6 weeks</td>
<td>64</td>
<td>3.73*</td>
<td>8.1**</td>
</tr>
<tr>
<td>Bonadio(^3)</td>
<td><4 weeks</td>
<td>35</td>
<td>8.5</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>4-8 weeks</td>
<td>40</td>
<td>4.5</td>
<td>11</td>
</tr>
<tr>
<td>Ahmed(^4)</td>
<td>≤30 days</td>
<td>108</td>
<td>4</td>
<td>11</td>
</tr>
</tbody>
</table>

\(^{+}\) All units /mm\(^3\)

*Mean value **Calculated

\(^2\) Portnoy JM, Olson LC. Pediatrics 1985.
Objective

To determine accurate, age-specific reference values for CSF WBC counts in a population of neonates & young infants
Methods: Study Design

- Cross-sectional study
- The Children’s Hospital of Philadelphia
 - 75,000 Emergency Department visits per year
- Participants
 - All infants age ≤ 56 days who had LP in ED between January 1, 2005 and June 30, 2007
 - Infants ≤ 56 days routinely undergo LP for evaluation of fever
 - Data collected by chart review
Methods: Exclusion

- Conditions known to cause CSF pleocytosis systematically excluded
 - Traumatic LP
 - Serious bacterial infection
 - Meningitis
 - Known neurologic condition or congenital infection
 - Positive CSF enterovirus PCR
 - No CSF WBC count documented
Methods: Patient Selection

1064 Infants with lumbar puncture

- 331 Traumatic lumbar puncture
- 133 Non-CNS bacterial infections
- 34 Other CNS processes*
- 44 Without CSF WBC count

90 Transported in

- 6 Bacterial meningitis
- 46 CSF EV PCR positive

380 Infants Included

*includes VP Shunt, CNS HSV or syphilis, seizure, abnormal head imaging
Methods: Analysis

- Median values established for each age group
- Wilcoxon rank-sum test
 - Compared infants 0-28 days to 29-56 days of age
- Stratified by CSF enterovirus PCR status (negative vs not done) and season
Overview

- Evaluating a febrile neonate
- Meningitis
- Study background and methods
- Study results and conclusions
- Part II: Participating in Research as a Student
Patient Population

<table>
<thead>
<tr>
<th></th>
<th>0-28 Days</th>
<th>29-56 Days</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>142</td>
<td>238</td>
</tr>
<tr>
<td>Male Sex</td>
<td>82 (57%)</td>
<td>125 (52%)</td>
</tr>
<tr>
<td>White</td>
<td>47 (34%)</td>
<td>64 (29%)</td>
</tr>
<tr>
<td>Fever on presentation</td>
<td>92 (65%)</td>
<td>213 (90%)</td>
</tr>
<tr>
<td>Preterm</td>
<td>22 (15%)</td>
<td>35 (15%)</td>
</tr>
<tr>
<td>EV Season</td>
<td>66 (46%)</td>
<td>82 (34%)</td>
</tr>
<tr>
<td>Hospital Stay Length Median (IQR)</td>
<td>2 days (2-3)</td>
<td>2 days (1-2.5)</td>
</tr>
</tbody>
</table>
Cerebrospinal Fluid WBC Counts

<table>
<thead>
<tr>
<th></th>
<th>0-28 Days (N=142)</th>
<th>29-56 Days (N=238)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean (SD)</td>
<td>9.2 (32.1)</td>
<td>3.1 (5.0)</td>
</tr>
<tr>
<td>Upper Limit 95% CI</td>
<td>14.5</td>
<td>3.8</td>
</tr>
<tr>
<td>Median*</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>90%</td>
<td>12</td>
<td>6</td>
</tr>
<tr>
<td>95%</td>
<td>19</td>
<td>9</td>
</tr>
<tr>
<td>IQR</td>
<td>2-6</td>
<td>1-3</td>
</tr>
</tbody>
</table>

† All units are /mm3

* p<0.001
Cerebrospinal Fluid WBC Counts†

<table>
<thead>
<tr>
<th></th>
<th>0-28 Days (N=142)</th>
<th>29-56 Days (N=238)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean (SD)</td>
<td>9.2 (32.1)</td>
<td>3.1 (5.0)</td>
</tr>
<tr>
<td>Upper Limit 95% CI</td>
<td>14.5</td>
<td>3.8</td>
</tr>
<tr>
<td>Median*</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>90%</td>
<td>12</td>
<td>6</td>
</tr>
<tr>
<td>95%</td>
<td>19</td>
<td>9</td>
</tr>
<tr>
<td>IQR</td>
<td>2-6</td>
<td>1-3</td>
</tr>
</tbody>
</table>

† All units are /mm3

* p<0.001
<table>
<thead>
<tr>
<th></th>
<th>0-28 Days (N=142)</th>
<th>29-56 Days (N=238)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean (SD)</td>
<td>9.2 (32.1)</td>
<td>3.1 (5.0)</td>
</tr>
<tr>
<td>Upper Limit 95% CI</td>
<td>14.5</td>
<td>3.8</td>
</tr>
<tr>
<td>Median*</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>90%</td>
<td>12</td>
<td>6</td>
</tr>
<tr>
<td>95%</td>
<td>19</td>
<td>9</td>
</tr>
<tr>
<td>IQR</td>
<td>2-6</td>
<td>1-3</td>
</tr>
</tbody>
</table>

† All units are /mm³

* p<0.001
CSF WBC Counts Infants 0-28 Days of Age

- **EV Negative**
 - N=37
 - Median: 4/mm³
 - 95th Percentile: 78

- **EV Not Tested**
 - N=70
 - Median: 3/mm³
 - 95th Percentile: 19

- **EV Not Tested Not EV Season**
 - N=70
 - Median: 3/mm³
 - 95th Percentile: 19

Box plots show the distribution of CSF WBC counts for each category.
CSF WBC Counts Infants 29-56 Days of Age

- **EV Negative**
 - Median: 2.5/mm³
 - 95th Percentile: 34
 - N=38

- **EV Not Tested**
 - Median: 2/mm³
 - 95th Percentile: 7
 - N=146

- **EV Season**
 - Median: 2/mm³
 - 95th Percentile: 7
 - N=54

Median: 2.5/mm³ 95th Percentile: 34

Median: 2/mm³ 95th Percentile: 7

Median: 2/mm³ 95th Percentile: 7
Enterovirus Testing

- Higher WBC counts in EV negative group
 - May be physician driven
 - May be a virus not tested for by PCR
 - May represent spectrum of normal

- Implications
 - Reference values can potentially shift with advances in PCR
Limitations

- Preterm Infants included
 - CSF WBC dependent on postnatal age, not postconceptional age
 - Analyzed with term infants

- Antibiotics prior to LP included
 - Additional criteria of gram stain, protein and glucose used
 - Unlikely that infants with bacterial meningitis are included
Conclusions

- Infants 0-28 Days: 95th percentile: $19/\text{mm}^3$
- Infants 29-56 Days: 95th percentile: $9/\text{mm}^3$
- Largest sample population to date
- Strict exclusion criteria used
- Age dependent reference values are essential to interpret results of lumbar puncture
Overview

- Evaluating a febrile neonate
- Meningitis
- Study background and methods
- Study results and conclusions
- Part II: Participating in Research as a Student
Research As a Medical Student

- Define your goals
- Carrying out a project
- What to do with your finished work
- Funding
Defining your goals

- Are you curious what research is about?
- Are you ‘checking off’ your scholarly pursuit?
- Do you want a full year experience?
- Do you want a full project without taking a year out?
Meeting your goals

- Summer projects
- Scholarly pursuit
- Year out
 - Doris Duke Fellowships
 - NIH fellowships
 - Pathology fellowship
 - And so on . . .
- Scholarly pursuit+
Choose your project

- Pick a topic that interests you
 - Clinical vs. basic science
 - Can be related to your future field but not essential

- Pick a mentor
 - Lecturers?
 - Clerkship attendings?
 - Mentors from previous years?
A Timeline

- Driven by your goals
- August of your clerkship year: Start thinking
- Email people, set up meetings
- Build your fourth year around your goals
 - Do your project done before interview season?
 - Do you want a letter from your advisor?
 - Do you want to do all of your research in the fall during interviews?
Your project!

- You have a mentor, a topic, and a time to start!
- You can work on ANY part of a project
 - IRB submission
 - Background research
 - Data collection
 - Data Analysis
 - Abstracts/Manuscripts/Posters
Things to Expect

- Everything takes longer than expected
- Good research takes time
 - IRB revisions
 - Data collection is tedious
 - Data cleaning prompts review of data
 - Writing requires multiple drafts, revisions
Preparing your work

- Abstracts
 - Short 10 sentence summaries of your work
 - Submitted to conferences or journals

- Posters
 - Visual presentations
 - Present at conferences/Research Day

- Manuscripts
 - Submit to journals
Funding

- Small projects can be done without grants
- Funding always helps
 - Off set small project expenses
 - Living for a summer
 - Support you for a year
- Requires ambition on your part
 - Read your email & check websites
 - Apply!
Thank you

This research was supported in part by the Clinical Neurosciences Scholars Track at the University of Pennsylvania School of Medicine.

Special Thanks to Samir Shah, MD, MSCE for mentoring.