Introduction to Gage R&R Studies
The Key to Understanding Measurement Systems

By
Hank Scutoski & Chander Sekar, Ph.D.
CERPROBE CORPORATION
Gilbert, Arizona
Speakers

- Hank Scutoski
 - VP Quality
 - 30 Years Experience
 - TI, Motorola, Cerprobe
 - Motorola University’s
 Six Sigma Research Institute
 - Certified Quality Engineer
 - Certified Quality Auditor

- Chander Sekar, Ph.D.
 - Corporate Statistician
 - 23 Years Experience
 - Professor of Statistics at
 the University of
 Madras, India
 - 3 Degrees in Statistics
 - Certified Quality Engineer
We must determine the uncertainty of our measurement systems before we can compare, control or optimize our manufacturing processes.
85 Studies to Date Including:

- Tip Diameter
- Tip Length
- Contact Force
- Probe Tip Alignment
- Planarity
- Contact Resistance
- Leakage
Benefits

- Validates consistent results between:
 - Cerprobe’s many manufacturing facilities
 - Cerprobe & customer sites

- Provides for “Dock to Stock” certification

- Provides feedback to Cerprobe’s suppliers.

- Able to provide customer with quality products with statistical consulting support.
Statistical Applications

- Gage R&R
 - Comparison of Metrology Tools
 - Design of Experiments
- SPC
- Scientific Guard Banding
Gage Repeatability

- The variation obtained from **one gage** and **one operator** when measuring the **same part** several times.

- Machine Variation

- Only Applies to ATE

\[
\text{Precision}_R = \text{Diameter} = 6 \text{ Std Dev}
\]

- Diagram showing the relationship between measurements and true value.
Gage Reproducibility

- The difference in the average of the measurements made by **different** operators using the **same** gage when measuring the **same** part.

- Operator-to-Operator Variation
No. of Operators: 3
No. of Parts: 32
No. of Trials: 3
No. of Operators: 3
No. of Parts: 32
No. of Trials: 3
Study #3

R&R Summary Plot

Video System

Operators

Deviation from Average

-0.00030
-0.00025
-0.00020
-0.00015
-0.00010
-0.00005
0.00000
0.00005
0.00010
0.00015
0.00020
0.00025
0.00030
Total Variation

- Process Variation
- Gage Variation
 - Repeatability
 - Reproducibility
Repeatability

Note:
- One Gage
- 1 Operator
- Repeated Measurements
Reproducibility

Note:
- One Gage
- 2 Operators
- Repeated Measurements
- One Part
Measurement System Capability

- Precision-to-Tolerance Ratio (P/T)

 \[P/T < 0.1 \quad \text{Acceptable System} \]

 \[0.1 < P/T < 0.3 \quad \text{Marginally Acceptable System} \]

 \[P/T > 0.3 \quad \text{Unacceptable System} \]

Ref.: SEMATECH: Introduction to Measurement Capability Analysis

#91090709A-ENG
Interpretation of P/T Ratios

\[P/T = 0.1 \]

* Measurement system consumes 10% of tolerance

* Effect of T on P/T

\[
\begin{align*}
P &= 1.2 & P &= 1.2 \\
T &= 4.0 & T &= 3.0 \\
P/T &= 0.3 & P/T &= 0.4
\end{align*}
\]
Repeatability Study

- Single operator performs multiple trials
- No change in the setup between trials
- Provides a quick estimate of measurement capability
- $P_{R/T}$
Repeatability Study - Data

<table>
<thead>
<tr>
<th>Trial #1</th>
<th>Trial #2</th>
<th>Trial #3</th>
<th>Trial #4</th>
<th>Trial #5</th>
<th>S</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0170</td>
<td>0.0180</td>
<td>0.0190</td>
<td>0.0070</td>
<td>0.0930</td>
<td>0.0351</td>
<td>0.0860</td>
</tr>
<tr>
<td>0.2090</td>
<td>0.1400</td>
<td>0.1630</td>
<td>0.1540</td>
<td>0.1340</td>
<td>0.0297</td>
<td>0.0750</td>
</tr>
<tr>
<td>0.0790</td>
<td>0.1170</td>
<td>0.0600</td>
<td>0.0880</td>
<td>0.0970</td>
<td>0.0211</td>
<td>0.0570</td>
</tr>
<tr>
<td>0.0770</td>
<td>0.0750</td>
<td>0.1350</td>
<td>0.0820</td>
<td>0.1380</td>
<td>0.0322</td>
<td>0.0630</td>
</tr>
<tr>
<td>0.0840</td>
<td>0.0300</td>
<td>0.0730</td>
<td>0.0780</td>
<td>0.0240</td>
<td>0.0285</td>
<td>0.0600</td>
</tr>
<tr>
<td>0.0500</td>
<td>0.0420</td>
<td>-0.0030</td>
<td>0.0380</td>
<td>0.0520</td>
<td>0.0224</td>
<td>0.0550</td>
</tr>
<tr>
<td>-0.0480</td>
<td>-0.0510</td>
<td>0.0020</td>
<td>-0.0420</td>
<td>-0.0370</td>
<td>0.0215</td>
<td>0.0530</td>
</tr>
<tr>
<td>0.0690</td>
<td>0.0830</td>
<td>0.1360</td>
<td>0.1150</td>
<td>0.0690</td>
<td>0.0299</td>
<td>0.0670</td>
</tr>
</tbody>
</table>

S: Standard Deviation R: Range
Repeatability Study

P/T Calculations

\[\frac{P_{R/T}}{T} = 6 \cdot \frac{\bar{R}}{d_2} \div (USL - LSL) \]
Gage R&R Study

- Involves multiple operators and trials
- Total tear down of the setup between trials
- Provides separate estimates of repeatability and reproducibility
- $P_{R&R}/T$
Gage R&R Study - Data

<table>
<thead>
<tr>
<th>O1-T1</th>
<th>O1-T2</th>
<th>O1-T3</th>
<th>O2-T1</th>
<th>O2-T2</th>
<th>O2-T3</th>
</tr>
</thead>
<tbody>
<tr>
<td>-0.0050</td>
<td>0.0360</td>
<td>0.0330</td>
<td>0.0040</td>
<td>-0.0070</td>
<td>-0.0420</td>
</tr>
<tr>
<td>-0.0100</td>
<td>-0.0460</td>
<td>-0.0600</td>
<td>-0.0170</td>
<td>-0.0680</td>
<td>-0.0700</td>
</tr>
<tr>
<td>0.0070</td>
<td>0.0110</td>
<td>0.0090</td>
<td>0.0230</td>
<td>-0.0190</td>
<td>-0.0040</td>
</tr>
<tr>
<td>-0.0170</td>
<td>-0.0820</td>
<td>-0.1060</td>
<td>-0.0890</td>
<td>-0.0540</td>
<td>-0.0580</td>
</tr>
<tr>
<td>-0.0620</td>
<td>-0.1000</td>
<td>-0.1010</td>
<td>-0.0270</td>
<td>-0.1090</td>
<td>-0.1000</td>
</tr>
<tr>
<td>-0.0830</td>
<td>-0.1480</td>
<td>-0.1210</td>
<td>-0.1200</td>
<td>-0.1280</td>
<td>-0.1870</td>
</tr>
<tr>
<td>-0.1100</td>
<td>-0.1460</td>
<td>-0.1520</td>
<td>-0.1200</td>
<td>-0.1890</td>
<td>-0.1900</td>
</tr>
<tr>
<td>-0.0560</td>
<td>-0.1490</td>
<td>-0.1290</td>
<td>-0.0900</td>
<td>-0.1650</td>
<td>-0.1780</td>
</tr>
</tbody>
</table>

O1, O2 - Operators 1 and 2
T1, T2, T3 - Trials 1, 2 and 3
Gage R&R Study

- Repeatability
- Reproducibility
- Operator-Part Interaction
- Part-to-Part Variation
Operator-to-Part Interaction

- Significant Operator-to-Part Interaction
 - Bad Gage
 - Poor Operator Training
 - Improper Measurement Study Procedure
Data Analysis Methods

- Average Range Method
- Analysis of Variance (ANOVA) Method
Gage R&R Study

P/T Calculations

\[\frac{P_{R&R}}{T} = 6 \times \frac{(R&R \text{ Sigma})}{(USL - LSL)} \]
Road Map to Success

Microscope
P/T 0.80

Video
P/T 0.23

Interaction with Suppliers
Feedback to Operators
Robust Data Collection
Advanced Statistical Techniques

Consistent Product Quality